论文: EESEN:END-TO-END SPEECH RECOGNITION USING DEEP RNN MODELS AND WFST-BASED DECODING ...
论文: IMPROVING LATENCY CONTROLLED BLSTM ACOUSTIC MODELS FOR ONLINE SPEECH RECOGNITION 思想: BLSTM作为当前主流的序列建模算法,在语音识别领域取得了不错的效果。但因为BLSTM的双向LSTM结构,在序列建模时需要用到未来的时序信息,这使得算法在流式语音识别中受到制约,不满足流式语音识别对输出延迟的要求 而LC ...
2020-09-16 10:11 0 589 推荐指数:
论文: EESEN:END-TO-END SPEECH RECOGNITION USING DEEP RNN MODELS AND WFST-BASED DECODING ...
论文: CTC:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks 思想: 语音识别中,一般包含语音 ...
论文: Deep-FSMN for Large Vocabulary Continuous Speech Recognition 思想: 对于大词汇量语音识别,往往需要更深的网络结构,但是当FSMN[1]或cFSMN[2]的结构很深时容易引发剃度消失和爆炸问题 ...
论文: SPEECH-TRANSFORMER: A NO-RECURRENCE SEQUENCE-TO-SEQUENCE MODELFOR SPEECH RECOGNITION ...
LAS: listen, attented and spell,Google 思想: sequence to sequence的思想,模型分为encoder和dec ...
论文: TRANSFORMER TRANSDUCER: A STREAMABLE SPEECH RECOGNITION MODELWITH TRANSFORMER ENCODERS A ...
论文: RNNT:SPEECH RECOGNITION WITH DEEP RECURRENT NEURAL NETWORKS,2013 LSTM结构: ...
论文: EXPLORING ARCHITECTURES, DATA AND UNITS FOR STREAMING END-TO-END SPEECH RECOGNITION WITH RNN- ...