原文:语音识别算法阅读之EESEN

论文: EESEN:END TO END SPEECH RECOGNITION USING DEEP RNN MODELS AND WFST BASED DECODING 现状: 混合DNN仍然GMM为其提供初始化的帧对齐,需要迭代训练强制对齐,以及决策树 end end的asr面临问题: 如何将发音词典和语言模型更好的融入解码中 现有算法模型缺乏共享的实验平台进行基准测试 思想: 网络框架采用 ...

2020-09-15 23:06 0 770 推荐指数:

查看详情

语音识别算法阅读之CTC

论文:   CTC:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks 思想:   语音识别中,一般包含语音 ...

Sun Sep 13 23:36:00 CST 2020 0 752
语音识别算法阅读之DFSMN

论文: Deep-FSMN for Large Vocabulary Continuous Speech Recognition 思想:   对于大词汇量语音识别,往往需要更深的网络结构,但是当FSMN[1]或cFSMN[2]的结构很深时容易引发剃度消失和爆炸问题 ...

Thu Sep 17 05:51:00 CST 2020 0 863
语音识别算法阅读之LAS

LAS:   listen, attented and spell,Google 思想:   sequence to sequence的思想,模型分为encoder和dec ...

Mon Sep 14 00:00:00 CST 2020 0 883
语音识别算法阅读之RNN-T-2018

论文:   EXPLORING ARCHITECTURES, DATA AND UNITS FOR STREAMING END-TO-END SPEECH RECOGNITION WITH RNN- ...

Wed Sep 16 06:26:00 CST 2020 0 2315
语音识别算法阅读之LC-BLSTM优化版

论文:   IMPROVING LATENCY-CONTROLLED BLSTM ACOUSTIC MODELS FOR ONLINE SPEECH RECOGNITION 思想:   BLSTM作为当前主流的序列建模算法,在语音识别领域取得了不错的效果。但因 ...

Wed Sep 16 18:11:00 CST 2020 0 589
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM