原文:神经网络前向传播与反向传播

神经网络 神经网络可以理解为一个输入x到输出y的映射函数,即f x y,其中这个映射f就是我们所要训练的网络参数w,我们只要训练出来了参数w,那么对于任何输入x,我们就能得到一个与之对应的输出y。只要f不同,那么同一个x就会产生不同的y,我们当然是想要获得最符合真实数据的y,那么我们就要训练出一个最符合真实数据的映射f。训练最符合真实数据f的过程就是神经网络的训练过程,神经网络的训练可以分为两个步 ...

2020-09-15 20:50 0 675 推荐指数:

查看详情

详解神经网络传播反向传播(从头推导)

详解神经网络传播反向传播本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。   对神经网络有些了解的人 ...

Sun Nov 14 07:22:00 CST 2021 0 179
神经网络传播FP和反向传播BP

1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右 ...

Sat Jul 28 00:52:00 CST 2018 0 2024
神经网络传播反向传播公式 详细推导

神经网络传播反向传播公式详细推导 本篇博客是对Michael Nielsen所著的《Neural Network and Deep Learning》第2章内容的解读,有兴趣的朋友可以直接阅读原文Neural Network and Deep Learning。   对神经网络有些了解 ...

Tue Mar 24 08:06:00 CST 2020 0 1508
神经网络中的参数的求解:向和反向传播算法

神经网络最基本的知识可以参考神经网络基本知识,基本的东西说的很好了,然后这里讲一下神经网络中的参数的求解方法。 注意一次的各单元不需要与后一层的偏置节点连线,因为偏置节点不需要有输入也不需要sigmoid函数得到激活值,或者认为激活值始终是1. 一些变量解释: 标上“”的圆圈被称为 ...

Tue Dec 30 22:09:00 CST 2014 0 13623
循环神经网络(RNN)模型与反向传播算法

    在前面我们讲到了DNN,以及DNN的特例CNN的模型和反向传播算法,这些算法都是向反馈的,模型的输出和模型本身没有关联关系。今天我们就讨论另一类输出和模型间有反馈的神经网络:循环神经网络(Recurrent Neural Networks ,以下简称RNN),它广泛的用于自然语言处理 ...

Tue Mar 07 03:57:00 CST 2017 166 118160
深度学习之前馈神经网络传播和误差反向传播

这篇文章主要整理三部分内容,一是常见的三种神经网络结构:神经网络、反馈神经网络和图网络;二是整理神经网络中正向传播、误差反向传播和梯度下降的原理;三是梯度消失和梯度爆炸问题的原因及解决思路。 一、神经网络结构 目前比较常用的神经网络结构有如下三种: 1、神经网络 神经网络中 ...

Sat Apr 13 06:39:00 CST 2019 0 4506
卷积神经网络中的反向传播

卷积神经网络中的反向传播 反向传播是梯度下降法在神经网络中应用,反向传播算法让神经网络的训练成为来可能。 首先要弄清一点,神经网络的训练过程就是求出一组较好的网络权值的过程。反向传播的直观解释就是先用当前网络的权值计算结果,然后根据计算结果和真实结果的差值来更新网络的权值,使得计算结果和真实 ...

Tue May 30 00:57:00 CST 2017 0 1427
神经网络与误差反向传播

目录 1 神经网络 1.1 神经元 1.2 网络 1.3 梯度下降 1.4 误差反向传播 1.5 BP示例 2 多样本 1 神经网络 大量结构简单的、功能接近的神经元节点按一定体系架构连接成的模拟 ...

Sun Oct 03 08:47:00 CST 2021 0 105
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM