前言 今天用到了PyTorch里的CosineAnnealingLR,也就是用余弦函数进行学习率的衰减。 下面讲讲定义CosineAnnealingLR这个类的对象时输入的几个参数是什么,代码示例就不放了。 正文 optimizer 需要进行学习率衰减的优化器变量 ...
pytorch实现学习率衰减 目录 pytorch实现学习率衰减 手动修改optimizer中的lr 使用lr scheduler LambdaLR lambda函数衰减 StepLR 阶梯式衰减 MultiStepLR 多阶梯式衰减 ExponentialLR 指数连续衰减 CosineAnnealingLR 余弦退火衰减 ReduceLROnPlateau 手动修改optimizer中的lr ...
2020-09-14 22:01 0 662 推荐指数:
前言 今天用到了PyTorch里的CosineAnnealingLR,也就是用余弦函数进行学习率的衰减。 下面讲讲定义CosineAnnealingLR这个类的对象时输入的几个参数是什么,代码示例就不放了。 正文 optimizer 需要进行学习率衰减的优化器变量 ...
学习率衰减是一个非常有效的炼丹技巧之一,在神经网络的训练过程中,当accuracy出现震荡或loss不再下降时,进行适当的学习率衰减是一个行之有效的手段,很多时候能明显提高accuracy。 Pytorch中有两种学习率调整(衰减)方法: 使用库函数进行调整; 手动调整 ...
Tensorflow实现各种学习率衰减 觉得有用的话,欢迎一起讨论相互学习~ 参考文献 Deeplearning AI Andrew Ng Tensorflow1.2 API 学习率衰减(learning rate decay) 加快学习算法的一个办法就是随时间慢慢减少 ...
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛。 本文主要介绍深度学习训练过程中的14种学习率衰减策略以及相应的Pytorch实现。 1. StepLR 按固定的训练epoch数进行学习率衰减。 举例说明: # lr = 0.05 if epoch ...
概念 之前一直对“权重衰减”和“学习率衰减”存在误解,我甚至一度以为它们是同一个东西,以至于使用的时候感觉特别困惑。在优化器中使用了“权重衰减”,竟然发现模型的准确率下降了,假如它们是同一个东西,至少应该是学得慢,而不是学坏了。因此,专门查了一下资料,了解两者的区别,这篇随笔做一下记录 ...
1.介绍 转自:https://blog.csdn.net/program_developer/article/details/80867468 在训练到一定阶段后,学习率可能会产生震荡,但是一开始用小的学习率的话,训练速度会很慢。 学习率衰减(learning rate ...
...
pytorch避免过拟合-权重衰减的实现 首先学习基本的概念背景 L0范数是指向量中非0的元素的个数;(L0范数难优化求解) L1范数是指向量中各个元素绝对值之和; L2范数是指向量各元素的平方和然后求平方根。 权重衰减等价于 L2范数正则化(regularization)。正则化通过为模型 ...