论文: Deep-FSMN for Large Vocabulary Continuous Speech Recognition 思想: 对于大词汇量语音识别,往往需要更深的网络结构,但是当FSMN[1]或cFSMN[2]的结构很深时容易引发剃度消失和爆炸问题 ...
论文: CTC:Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks 思想: 语音识别中,一般包含语音段和对应的文本标签,但是却并不知道具体的对齐关系,即字符和语音帧之间对齐,这就给语音识别训练任务带来困难 而CTC在训练时不关心具体的唯一 ...
2020-09-13 15:36 0 752 推荐指数:
论文: Deep-FSMN for Large Vocabulary Continuous Speech Recognition 思想: 对于大词汇量语音识别,往往需要更深的网络结构,但是当FSMN[1]或cFSMN[2]的结构很深时容易引发剃度消失和爆炸问题 ...
论文: SPEECH-TRANSFORMER: A NO-RECURRENCE SEQUENCE-TO-SEQUENCE MODELFOR SPEECH RECOGNITION ...
LAS: listen, attented and spell,Google 思想: sequence to sequence的思想,模型分为encoder和dec ...
论文: EESEN:END-TO-END SPEECH RECOGNITION USING DEEP RNN MODELS AND WFST-BASED DECODING ...
目录 基于keras的中文语音识别 音频文件特征提取 文本数据处理 数据格式处理 构建模型 模型训练及解码 aishell数据转化 该项目github地址 基于keras的中文语音识别 该项目实现了GRU-CTC中文语音识别 ...
完整版请微信关注“大数据技术宅” 序言:语音识别作为人工智能领域重要研究方向,近几年发展迅猛,其中RNN的贡献尤为突出。RNN设计的目的就是让神经网络可以处理序列化的数据。本文笔者将陪同小伙伴们一块儿踏上语音识别之梦幻旅途,相信此处风景独好。 内容目录 环境准备 RNN ...
本文介绍 kaldi-ctc 构建 CTC[1, 2, 3, 4] 语音识别加权有限状态机(WFST)解码网络的方式。 示例相关资源 lifeiteng/codingmath/CTC-decoding-graph 构建语言模型 以 单句 “how are you ...
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文作者:罗冬日 目前主流的语音识别都大致分为特征提取,声学模型,语音模型几个部分。目前结合神经网络的端到端的声学模型训练方法主要CTC和基于Attention两种。 本文主要介绍CTC算法的基本概念,可能应用的领域 ...