原文:【机器学习与R语言】3-概率学习朴素贝叶斯(NB)

目录 .理解朴素贝叶斯 基本概念 朴素贝叶斯算法 .朴素贝斯分类应用 收集数据 探索和准备数据 训练模型 评估模型性能 提升模型性能 .理解朴素贝叶斯 基本概念 依据概率原则进行分类。如天气预测概率。 朴素贝叶斯 Naive Bayes, NB 适合场景:为估计一个结果的概率,从众多属性中提取的信息应该被同时考虑。 很多算法忽略了弱影响的特征 若有大量弱影响的特征,它们组合在一起的影响可能会很大 ...

2020-08-31 22:37 0 879 推荐指数:

查看详情

机器学习(五)—朴素

  最近一直在看机器学习相关的算法,今天我们学习一种基于概率论的分类算法—朴素。本文在对朴素进行简单介绍之后,通过Python编程加以实现。 一 朴素概述 ...

Thu Sep 03 05:37:00 CST 2015 1 3708
机器学习(一)—朴素

的条件下都是条件独立的。 1、朴素朴素在哪里?   简单来说:利用贝叶斯定理求解联合概率P( ...

Fri May 04 19:45:00 CST 2018 0 3420
机器学习-朴素

概率分类器: 朴素是一种直接衡量标签和特征质检的概率关系的有监督学习算法, 是一种专注分类的算法, 朴素的算法根源是基于概率论和数理统计的理论, 因此它是根正苗红的概率模型. 关键概念: 联合概率: X取值为x和Y的取值为y, 两个事件同时发生的概率, 表示 ...

Mon Dec 13 23:49:00 CST 2021 0 765
机器学习 - 朴素

简介 朴素是一种基于概率进行分类的算法,跟之前的逻辑回归有些相似,两者都使用了概率和最大似然的思想。但与逻辑回归不同的是,朴素斯通过先验概率和似然概率计算样本在每个分类下的概率,并将其归为概率值最大的那个分类。朴素适用于文本分类、垃圾邮件处理等NLP下的多分类问题。 核心 ...

Fri Aug 06 01:51:00 CST 2021 0 199
机器学习四 -- 基于概率论的分类方法:朴素

基于概率的分类方法:朴素 决策理论 朴素决策理论的一部分,所以在讲解朴素之前我们先快速简单了解一下决策理论知识。 决策理论的核心思想:选择具有最高概率的决策。比如我们毕业选择就业方向,选择C++方向的概率为0.3,选择Java的概率 ...

Tue Jun 16 22:55:00 CST 2015 0 2028
概率--学习朴素分布

概率是一种基于事件发生可能性来描述未来趋势的数学工具。其本质就是通过过去已经发生的事情来推断未来事件,并且将这种推断放在一系列的公理化的数学空间当中进行考虑。例如,抛一枚均质硬币,正面向上的可能性多大?概率值是一个0-1之间的数字,用来衡量一个事件发生可能性的大小。概率值越接近于1,事件发生 ...

Sun Oct 02 22:07:00 CST 2016 1 7444
机器学习Sklearn系列:(四)朴素

3--朴素 原理 朴素本质上就是通过公式来对得到类别概率,但区别于通常的公式,朴素有一个默认条件,就是特征之间条件独立。 条件概率公式: \[P(B|A) = \frac{P(A|B)P(B)}{P(A)} \] 公式可以写成: \[p ...

Mon Jul 19 06:37:00 CST 2021 2 168
机器学习--朴素模型原理

朴素中的朴素是指特征条件独立假设, 是指贝叶斯定理, 我们从贝叶斯定理开始说起吧. 1. 贝叶斯定理 贝叶斯定理是用来描述两个条件概率之间的关系 1). 什么是条件概率? 如果有两个事件A和B, 条件概率就是指在事件B发生的条件下, 事件A发生的概率, 记作P(A|B ...

Sun Mar 17 00:14:00 CST 2019 0 1969
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM