之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助。 1、逻辑斯谛分布 介绍逻辑斯谛回归模型之前,首先看一个并不常见的概率分布,即逻辑斯谛分布。设X是连续 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第 篇文章,我们来聊聊SVM。 SVM模型大家可能非常熟悉,可能都知道它是面试的常客,经常被问到。它最早诞生于上世纪六十年代。那时候虽然没有机器学习的概念,也没有这么强的计算能力,但是相关的模型和理论已经提出了不少,SVM就是其中之一。 SVM完全可以说是通过数学推导出来的模型,由于当时还没有计算机,所以模型当中的参数 ...
2020-08-26 16:26 0 2071 推荐指数:
之前整理过一篇关于逻辑回归的帖子,但是只是简单介绍了一下了LR的基本思想,面试的时候基本用不上,那么这篇帖子就深入理解一下LR的一些知识,希望能够对面试有一定的帮助。 1、逻辑斯谛分布 介绍逻辑斯谛回归模型之前,首先看一个并不常见的概率分布,即逻辑斯谛分布。设X是连续 ...
引言 对于SVM的大致原理之前已经讲过了,但是对于公式的推导,很多书都并未做要求,而且在实际应用过程中并未涉及过深,但鉴于台大机器学习课程中讲到了,自己为了巩固自己的学习,也梳理一遍SVM中公式的推导 此处考虑了C,也就是惩罚因子,不再是之前的hard-margin ...
SVM是机器学习中神一般的存在,虽然自深度学习以来有被拉下神坛的趋势,但不得不说SVM在这个领域有着举足轻重的地位。本文从Hard SVM 到 Dual Hard SVM再引进Kernel Trick,然后推广到常用的Soft Kernel SVM。 一、Hard SVM ...
定义: 支持向量机SVM(Support vector machine)是一种二值分类器方法,其基本是思想是:找到一个能够将两类分开的线性可分的直线(或者超平面)。实际上有许多条直线(或超平面)可以将两类目标分开来,我们要找的其实是这些直线(或超平面)中分割两类目标时,有最大距离的直线(或超平面 ...
一、Hard Margin SVM SVM 的思想,最终用数学表达出来,就是在优化一个有条件的目标函数: 此为 Hard Margin SVM,一切的前提都是样本类型线性可分; 1)思想 SVM 算法的本质就是最大化 margin; margin ...
逻辑斯蒂回归(分类) sigmoid函数与二项逻辑回归模型 \(sigmoid\)函数为: \[sigmoid(x)=\pi(x)=\frac{1}{1+e^{-x}}\\ \] 其中\(x \in \mathbb{R}\),\(sigmoid(x)\in (0,1 ...
线性回归 参考西瓜书《机器学习》线性回归 给定训练集\(D={(\boldsymbol x_1, y_1), (\boldsymbol x_2, y_2), ..., (\boldsymbol x_i, y_i), ( \boldsymbol x_n, y_n ...
支持向量机—SVM原理代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p ...