本文参考博文https://blog.csdn.net/u013733326/article/details/80086090完成。 1.神经网络的底层搭建 本次作业要求我们要实现一个拥有卷积层(CONV)和池化层(POOL)的网络,它包含了前向和反向传播。首先我们确定一下此次项目要实现 ...
本文参考文章https: blog.csdn.net u article details 完成,原文写的非常好,非常详细,如果是第一次做这个作业的同学可以去看一下这个作者的文章,非常推荐。 本次作业的内容有两项,一是框架Keras的入门练习,二是搭建一个残差网络。下面开始第一项任务。 Keras入门 笑脸识别 Keras框架是一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的 ...
2020-08-25 09:39 0 460 推荐指数:
本文参考博文https://blog.csdn.net/u013733326/article/details/80086090完成。 1.神经网络的底层搭建 本次作业要求我们要实现一个拥有卷积层(CONV)和池化层(POOL)的网络,它包含了前向和反向传播。首先我们确定一下此次项目要实现 ...
此内容主要针对于吴恩达的神经网络与深度学习课后作业(第一课第二周的作业)进行学习,记录。 参考连接https://github.com/andersy005/deep-learning-specialization-coursera 说明 实现功能:这段代码主要实现的功能是判断一张图片是否 ...
时间:2021/02/16 一.卷积神经网络 1.1 计算机视觉 卷积神经网络一般应用于计算机视觉领域,由于有的时候图片的像素点很多,导致神经网络输入特征值的维数很多。 1.2 边缘检测示例 如下图所示,原图是一个6*6*1的矩阵,卷积核是一个 ...
量不仅大,而且由于图像样本相对于特征实在是太少,导致很容易过拟合,所以需要其他的方式来连接,即卷积。 ...
Residual Networks 参考:https://blog.csdn.net/u013733326/article/details/80250818 欢迎来到本周的第二次作业!您将学习如何使用剩余网络(ResNets)构建非常深的卷积网络。理论上,深度很深的网络可以代表非常复杂 ...
2.1二分类 (1)以一张三通道的64×64的图片做二分类识别是否是毛,输出y为1时认为是猫,为0时认为不是猫: y输出是一个数,x输入是64*64*3=12288的向量。 (2)以下是一些 ...
一个小区域的均值 ,全连接层:类似于普通的神经网络,将最后的比如120*1的列向量全连接映射到80*1 ...
作者:szx_spark 1. 经典网络 LeNet-5 AlexNet VGG Ng介绍了上述三个在计算机视觉中的经典网络。网络深度逐渐增加,训练的参数数量也骤增。AlexNet大约6000万参数,VGG大约上亿参数。 从中我们可以学习 ...