写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目。虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣。 第一部分 模型 Bert模型是Google ...
将进行以下尝试: 用词级的 ngram 做 logistic 回归 用字符级的 ngram 做 logistic 回归 用词级的 ngram 和字符级的 ngram 做 Logistic 回归 在没有对词嵌入进行预训练的情况下训练循环神经网络 双向 GRU 用 GloVe 对词嵌入进行预训练,然后训练循环神经网络 多通道卷积神经网络 RNN 双向 GRU CNN 模型 数据集下载地址:http: ...
2020-08-16 14:02 0 959 推荐指数:
写在前面 文本分类是nlp中一个非常重要的任务,也是非常适合入坑nlp的第一个完整项目。虽然文本分类看似简单,但里面的门道好多好多,作者水平有限,只能将平时用到的方法和trick在此做个记录和分享,希望大家看过都能有所收获,享受编程的乐趣。 第一部分 模型 Bert模型是Google ...
1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...
) 2. fastText模型剖析 2.1 概念 FastText是一种典型的深度学习词向量的表 ...
You Need》[1],其在一些翻译任务上获得了SOTA的效果。其模型整体结构如下图所示 ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
实战:https://github.com/jiangxinyang227/NLP-Project 一、简介: 1、传统的文本分类方法:【人工特征工程+浅层分类模型】 (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配 ...
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...