有样本的Loss再计算一次梯度更新参数的方式效率是很低的。因此就有了随机梯度下降和mini-batch梯度下 ...
一.梯度下降 梯度下降就是最简单的用于神经网络当中用于更新参数的用法,计算loss的公式如下: 有了lossfunction之后,我们立马通过这个loss求解出梯度,并将梯度用于参数theta的更新,如下所示: 这样做之后,我们只需要遍历所有的样本,就可以得到一个最终的参数theta了,这个参数可能是全局最小值,也可能不是,因为很有可能走入了一个loss的局部最小值当中。 二.随机梯度下降 SGD ...
2020-08-09 16:42 0 776 推荐指数:
有样本的Loss再计算一次梯度更新参数的方式效率是很低的。因此就有了随机梯度下降和mini-batch梯度下 ...
梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 如下图所示,梯度下降不一定能找到全局最优解,可能寻找到的是局部最优解。(当损失函数是凸函数时 ...
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复出现的问题: 好的泛化需要大的训练集,但是大的训练集的计算代价也更大 ...
大规模机器学习: 线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本) 批量梯度下降算法(Batch gradient descent): 每计算一次梯度会遍历全部的训练样本,如果训练样本的比较多时,内存消耗 ...
优化函数 损失函数 BGD 我们平时说的梯度现将也叫做最速梯度下降,也叫做批量梯度下降(Batch Gradient Descent)。 对目标(损失)函数求导 沿导数相反方向移动参数 在梯度下降中,对于参数 ...
再进行Mini-batch 梯度下降法学习之前,我们首先对梯度下降法进行理解 一、梯度下降法(Gradient Descent) 优化思想:用当前位置的负梯度方向作为搜索方向,亦即为当前位置下降最快的方向,也称“最速下降法”。越接近目标值时,步长越小,下降越慢。 首先来看看梯度下降 ...
某次迭代中增加了,那肯定出了问题,也许你的学习率太大。 使用 mini-batch 梯度下降法, ...