机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
前言 . dice系数 . diceloss原理 . diceloss优缺点 . diceloss实现 . 二类别 , , . 多类别 参考 .相似度计算之Dice系数 . https: github.com hubutui DiceLoss PyTorch blob master loss.py . https: jishuin.proginn.com p bfbd aeb .hausdorff ...
2020-08-05 17:50 0 1359 推荐指数:
机器学习是时下流行AI技术中一个很重要的方向,无论是有监督学习还是无监督学习都使用各种“度量”来得到不同样本数据的差异度或者不同样本数据的相似度。良好的“度量”可以显著提高算法的分类或预测的准确率,本文中将介绍机器学习中各种“度量”,“度量”主要由两种,分别为距离、相似度和相关系数 ...
Dice距离用于度量两个集合的相似性,因为可以把字符串理解为一种集合,因此Dice距离也会用于度量字符串的相似性。此外,Dice系数的一个非常著名的使用即实验性能评测的F1值。Dice系数定义如下: Dice 系数可以计算两个字符串的相似度: $Dice(s1,s2 ...
余弦相似度 目录 余弦相似度概念 余弦相似度公式 余弦距离 1. 余弦相似度概念 在机器学习问题中,通常将特征表示为向量的形式,所以在分析两个特征向量之间的相似性时,常用余弦相似度来表示。 余弦相似度通过测量两个向量的夹角的余弦值来度量它们之间的相似度,取值范围 ...
四、信息论 信息论是应用数学的一个分支,主要研究的是对一个信号能够提供信息的多少进行量化。如果说概率使我们能够做出不确定性的陈述以及在不确定性存在的情况下进行推理,那信息论就是使我们能够量化概率分布 ...
html { overflow-x: initial !important } :root { --bg-color: #ffffff; --text-color: #333333; --select ...
马氏距离(Mahalanobis Distance) 马氏距离(Mahalanobis Distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离。它是一种有效的计算两个未知样本集的相似度的方法。它考虑到数据特征之间的联系,并且是尺度无关 ...
一、百度云AI服务 最近在调研一些云服务平台的AI(人工智能)服务,了解了一下阿里云、腾讯云和百度云。其中,百度云提供了图像识别及图像搜索,而且还细分地提供了相似图片这项服务,比较符合我的需求,且百度云提供了每日10000次入库和500次检索的免费次数,使得我可以更快地试用,且没有任何花费 ...
环境 Python3, gensim,jieba,numpy ,pandas 原理:文章转成向量,然后在计算两个向量的余弦值。 Gensim gensim是一个python的自然语言处理库,能够将文档根据TF-IDF, LDA, LSI 等模型转化成向量模式,gensim还实现 ...