【连续函数“局部保号性”的证明】 \(设f(x)是连续函数,若f(x_{0})=A>0,则\exists\delta>0,当0<|x-x_{0}|<\delta时,有f(x)>0\) 【证明】 \(因为f(x)是连续函数,所以\forall\epsilon> ...
定理内容 若 exists N ,当n gt N 时,有a n leqslant b n ,则lim n to infty a n leqslant lim n to infty b n 注意,不是数列极限的保号性 说明,前提条件是从某项开始,所有项都满足a n leqslant b n ,即a n 不大于b n ,对于序号相同的项,即小于或者等于 如同分数线,不大于 分,则 分,以及 分都符合 ...
2020-08-05 09:07 0 2556 推荐指数:
【连续函数“局部保号性”的证明】 \(设f(x)是连续函数,若f(x_{0})=A>0,则\exists\delta>0,当0<|x-x_{0}|<\delta时,有f(x)>0\) 【证明】 \(因为f(x)是连续函数,所以\forall\epsilon> ...
收敛函数的含义:设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。 论题:若An数列收敛,则极限唯一 ...
目录 1. 上、下确界的若干结论 1.1 与集合的上、下确界有关的结论 1.2 与函数的上、下确界有关的结论 2. 上、下极限的定义 1. 上、下确界的若干结论 1.1 与集合的上、下确界有关的结论 命题1. 设 ...
1.定义 例子 即,定义为: 注意: 1.数列极限的“ ε-N”语言,即满足这些条件为极限 2.若数列{Xn}不存在极限,就称{Xn}发散 3.ε的作用主要体现在任意小,它是用来刻画Xn趋向于a的程度的,太大不行。常对ε做一些 ...
problem \[\text { 求极限: } \lim _{x \rightarrow+\infty} \frac{\int_{0}^{x} \frac{|\sin t|}{t} d t}{\ln x} \text {. } \] solution 解: 利用不等式: \(\ln ...
数学分析:笔记合集——总目录 数列极限:数列极限的概念 要学习数列极限,首先要搞清楚,什么是数列? 数列基础 我们所熟知的数列有: 三角形数 正方形数 斐波那契数列 …… 在中学阶段,我们已经学习过数列的基础知识。 定义 1(数列):按照一定次序排列的一列数称为 ...
一、数列与数列极限 刘徽——割圆术 还可以表示为 xn= 1- 1/(2^n) 因为棒长是固定1 减去最后一天剩下的 也是截取的总长 1-1/(2^n)无限趋近于1 数列的定义 ·按自然数1,2,3,…编号依次排列的一列数 x1 x2 ...
若{$a_{n}$}与{$b_{n}$}为收敛数列,则{$a_{n} \cdot b_{n}$}为收敛数列,且有 $lim_{n\to\infty} ( a_{n} \cdot b_{n} ) = lim_{n\to\infty} a_{n} \cdot lim_{n\to\infty ...