在本章,我们将要学习DataStream API中处理时间和基于时间的操作符,例如窗口操作符。 首先,我们会学习如何定义时间属性,时间戳和水位线。然后我们将会学习底层操作process function,它可以让我们访问时间戳和水位线,以及注册定时器事件。接下来,我们将会使用Flink ...
窗口操作符 窗口操作是流处理程序中很常见的操作。窗口操作允许我们在无限流上的一段有界区间上面做聚合之类的操作。而我们使用基于时间的逻辑来定义区间。窗口操作符提供了一种将数据放进一个桶,并根据桶中的数据做计算的方法。例如,我们可以将事件放进 分钟的滚动窗口中,然后计数。 无限流转化成有限数据的方法:使用窗口。 . 定义窗口操作符 Window算子可以在keyed stream或者nokeyed s ...
2020-08-03 23:21 0 489 推荐指数:
在本章,我们将要学习DataStream API中处理时间和基于时间的操作符,例如窗口操作符。 首先,我们会学习如何定义时间属性,时间戳和水位线。然后我们将会学习底层操作process function,它可以让我们访问时间戳和水位线,以及注册定时器事件。接下来,我们将会使用Flink ...
1 基于时间的双流Join 数据流操作的另一个常见需求是对两条数据流中的事件进行联结(connect)或Join。Flink DataStream API中内置有两个可以根据时间条件对数据流进行Join的算子:基于间隔的Join和基于窗口的Join。本节我们会对它们进行介绍。 如果Flink ...
Trigger作用在WindowStream上,也就是说,trigger是跟随在window()算子之后的。Trigger决定了窗口中的数据何时可以被window function处理, 每一个窗口分配器都有一个默认的触发器,如果默认的触发器不能满足需要,你可以通过调用 ...
1 初识 Flink Flink 项目的理念是:“Apache Flink 是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架”。 Apache Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算 ...
1 设置并行度 Flink应用程序在一个像集群这样的分布式环境中并行执行。当一个数据流程序提交到作业管理器执行时,系统将会创建一个数据流图,然后准备执行需要的操作符。每一个操作符将会并行化到一个或者多个任务中去。每个算子的并行任务都会处理这个算子的输入流中的一份子集。一个算子并行任务的个数叫做 ...
1 系统架构 Flink是一个用于有状态的并行数据流处理的分布式系统。它由多个进程构成,这些进程一般会分布运行在不同的机器上。对于分布式系统来说,面对的常见问题有:集群中资源的分配和管理、进程协调调度、持久化和高可用的数据存储,以及故障恢复。 对于这些分布式系统的经典问题,业内已有 ...
1 产生传感器读数代码编写(读取数据源) 1.1 从批读取数据 scala version java version 1.2 从文件读取数据 scala vers ...
本章介绍了Flink DataStream API的基本知识。我们展示了典型的Flink流处理程序的结构和组成部分,还讨论了Flink的类型系统以及支持的数据类型,还展示了数据和分区转换操作。窗口操作符,基于时间语义的转换操作,有状态的操作符,以及和外部系统的连接器将在接下来的章节进行介绍 ...