在现实的网络中,构成网络的每个节点可能在网络中担任着某种角色。比如社交网络中,经常可以看见一些关注量很高的大V。两个大V在网络中的角色可能相同,因为他们都有很高的关注量;而大V与普通人(仅有几个关注) ...
论文目的 强调依据的 Graph 中的 structure info 对于 Node 的分类。这区别于以往的假设 相邻较近的节点具有相似的分类情况 即用 structure identity 。换句话说 struc vec is superior in a classification task where node labels depends more on structural identi ...
2020-09-08 20:33 0 438 推荐指数:
在现实的网络中,构成网络的每个节点可能在网络中担任着某种角色。比如社交网络中,经常可以看见一些关注量很高的大V。两个大V在网络中的角色可能相同,因为他们都有很高的关注量;而大V与普通人(仅有几个关注) ...
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控。本文 ...
[论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 解决异构网络上的节点嵌入 ...
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果)。然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明。最后给出了FCN代码的详解(待更新)。 Fully ...
文献:DaSiamRPN: Zheng Zhu, Qiang Wang, Bo Li, Wu Wei, Junjie Yan, Weiming Hu."Distractor-aware Siamese ...
目录 GAN ACGAN AAE BiGAN BGAN BEGAN BicycleGAN ClusterGAN CGAN CCGAN C ...
引入 1. 随机梯度下降的特点 随机梯度下降法(Stochastic Gradient Descent)作为深度学习中主流使用的最优化方法, 有以下的优点: 躲避和逃离假的鞍点和局部极小点的能力 这篇论文认为, 这些局部极小也包含着一些有用的信息, 能够帮助提升模型的能力 ...
论文:《UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS》 发表日期:ICLR 2016 前言 这几年CNNs在计算机视觉应用的监督学习方面 ...