有两种方法,常见的证明方法是有限覆盖定理。 这里是参考中科大数分教材的证明方法,做了修改。 中科大是反证法利用构造子列的列紧性定理 \(\\\) 【中科大反证法】课本106页 定理:设f(x)在[a,b]上连续,则f(x)在[a,b]上一致连续。 证明:用反证法。 \(假设f(x)不一致连续 ...
设f x 是 a,b 上连续函数,则f x 在 a,b 上必然一致连续 证明:因为f x 在 a,b 上连续,所以任取 a,b 内一点x ,任给 frac epsilon gt exists delta x gt ,对于任何x in a,b ,且异于x ,若 x x lt delta,有 f x f x lt epsilon 因为这个 delta与x 的选取有关,对于同一个 epsilon,不同 ...
2020-07-30 12:48 0 1312 推荐指数:
有两种方法,常见的证明方法是有限覆盖定理。 这里是参考中科大数分教材的证明方法,做了修改。 中科大是反证法利用构造子列的列紧性定理 \(\\\) 【中科大反证法】课本106页 定理:设f(x)在[a,b]上连续,则f(x)在[a,b]上一致连续。 证明:用反证法。 \(假设f(x)不一致连续 ...
只证上界存在,下界同理。 【证明】 反证法,假设f(x)在闭区间[a,b]上连续,假设没有上界 \(则\forall n\in N,\exists x_{n}\in [a,b],\) \(有f(x_{n})>n\quad\quad\quad\quad\quad\quad ...
qq网友3204901701提供证明 ...
一致连续定理 一致连续定义 设函数 \(f(x)\) 在区间 \(I\) 上有定义,如果,\(\forall \epsilon > 0, \exist \delta >0\),使得对于在区间 \(I\) 上的任意两点 \(x_1, x_2\),当 \(|x_1 - x_2| < ...
参考知乎https://zhuanlan.zhihu.com/p/33020088 说明: 非一致连续,即:连续,但是非“一致连续”,或“非一致”连续。都是以连续为基本性质。 非一致连续,属于连续。 【连续】 【定义1】 \(设f(x),x\in[a,b]或者开区间,设x_{0}\in[a,b ...
函数在闭区间连续性质 闭区间连续定义 引理 a 从确界原理到单调有界 从单调有界到闭区间套 介值定理(零点存在性) 函数在某点连续,则在其某邻域上有界 函数在闭区间连续则有界 闭区间连续定义 若函数 \(f\) 在闭区间 \([a, b]\) 上有定义 ...
【连续函数“局部保号性”的证明】 \(设f(x)是连续函数,若f(x_{0})=A>0,则\exists\delta>0,当0<|x-x_{0}|<\delta时,有f(x)>0\) 【证明】 \(因为f(x)是连续函数,所以\forall\epsilon> ...
转载自https://www.cnblogs.com/cezorzhao/archive/2013/03/21/2974170.html 最近在看《信号与系统》,连续傅里叶级数和离散傅里叶级数中,离散傅里叶级数的谐波信号种类是有限的,而连续时间信号的傅里叶级数的谐波信号就有无数个,这个让我很不 ...