转自:http://blog.csdn.net/ls317842927/article/details/79072662 一、基础算法 基于物品的协同过滤算法(简称ItemCF)给用户推荐那些和他们之前喜欢的物品相似的物品。不过ItemCF不是利用物品的内容计算物品之间相似度,而是利用 ...
一 背景 某电商平台,有一批用户浏览 收藏 购买物品的日志数据。实现用户进入APP之后第一页显示商品的个性化推荐。ps:当前阶段,显示数据为随机选取。 二 思考 因为是某一品类的特殊电商平台,卖的商品几百种,但是用户几十万。这种情况,考虑使用ItemCF,至于为什么不是UserCF:物品相似度矩阵为 ,用户相似度矩阵为 。但是也有一个问题,使用物品相似度矩阵会不会使信息丢失更多。 类似电影评分数据 ...
2020-07-28 15:45 0 805 推荐指数:
转自:http://blog.csdn.net/ls317842927/article/details/79072662 一、基础算法 基于物品的协同过滤算法(简称ItemCF)给用户推荐那些和他们之前喜欢的物品相似的物品。不过ItemCF不是利用物品的内容计算物品之间相似度,而是利用 ...
用户对物品的评分矩阵 × 物品相似矩阵 = 推荐列表 构建物品相似度矩阵的时候可以通过计算两个物品的余弦相似度得出,于是需要构建每个物品在所有用户中的评分矩阵 本例中,不采用余弦相似度的方式计算物品与物品相似度 在MapReduce作业中,输入数据的格式是:用户,物品 ...
机器学习-推荐系统-协同过滤 协同过滤(Collaborative Filtering, CF) 基于协同过滤的推荐,它的原理很简单,就是根据用户对物品或者信息的偏好,发现物品或者内容本身的相关性,或者发现用户的相关性,然后再基于这些相关性进行推荐。基于协同过滤的推荐可以分为两个简单的子类 ...
一、基本介绍 1. 推荐系统任务 推荐系统的任务就是联系用户和信息一方面帮助用户发现对自己有价值的信息,而另一方面让信息能够展现在对它感兴趣的用户面前从而实现信息消费者和信息生产者的双赢。 2. 与搜索引擎比较 相同点:帮助用户快速发现有用信息的工具 不同点:和搜索引擎不同的是推荐 ...
本节将会学习到: 协同过滤推荐系统 协同过滤推荐系统的R实现 推荐系统的可视化 不同推荐系统的离线实验算法比较及可视化 前言 推荐系统概述 数据构成 set.seed ( 1234 ) library ...
基于物品的协同过滤算法ItemCF 基于item的协同过滤,通过用户对不同item的评分来评测item之间的相似性,基于item之间的相似性做出推荐。简单来讲就是:给用户推荐和他之前喜欢的物品相似的物品。 用例说明: 注:基于物品的协同过滤算法,是目前商用最广泛的推荐算法。 刚开始看这 ...
基于邻域的算法是推荐系统中最基本的算法,该算法不仅在学术界得到了深入研究,而且在 业界得到了广泛应用。基于邻域的算法分为两大类,一类是基于用户的协同过滤算法,另一类是 基于物品的协同过滤算法。 基于用户的协同过滤算法: 该算法主要分为两个步骤 ...
这个转自csdn,很贴近工程。 协同过滤(Collective Filtering)可以说是推荐系统的标配算法。 在谈推荐必谈协同的今天,我们也来谈一谈基于KNN的协同过滤在实际的推荐应用中的一些心得体会。 我们首先从协同过滤的两个假设聊起。 两个假设: 用户一般会喜欢 ...