郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! ICML 2017 Abstract 我们提出了一种与模型无关的元学习算法,从某种意义上说,该算法可与通过梯度下降训练的任何模型兼容,并适用于各种不同的学习问题,包括分类,回归和RL。元学习的目标是针对各种学习任务 ...
代码: github.com cbfinn maml github.com cbfinn maml rl Model Agnostic Meta Learning for Fast Adaptation of Deep Networks Abstract 我们提出了一种与模型无关的元学习算法,因为它与任何用梯度下降训练过的模型兼容,适用于各种不同的学习问题,包括分类 回归和强化学习。元学习的目标是 ...
2020-07-17 17:18 0 1029 推荐指数:
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! ICML 2017 Abstract 我们提出了一种与模型无关的元学习算法,从某种意义上说,该算法可与通过梯度下降训练的任何模型兼容,并适用于各种不同的学习问题,包括分类,回归和RL。元学习的目标是针对各种学习任务 ...
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks ICML 2017 Paper:https://arxiv.org/pdf/1703.03400.pdf Code for the regression ...
摘要:我们提出了一种不依赖模型的元学习算法,它与任何梯度下降训练的模型兼容,适用于各种不同的学习问题,包括分类、回归和强化学习。元学习的目标是在各种学习任务上训练一个模型,这样它只需要少量的训练样本就可以解决新的学习任务。在我们的方法中,模型的参数被显式地训练,使得少量的梯度步骤和少量的来自 ...
paper:https://link.zhihu.com/?target=https%3A//arxiv.org/pdf/1703.03400.pdf MAML在学术界已经是非常重要的模型了,论文Model-Agnostic Meta-Learning for Fast ...
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can be found from: Model Agnostic Meta Learning ...
On First-Order Meta-Learning Algorithms Abstract 本文考虑元学习问题,其中存在任务分布,我们希望得到一个当面 ...
关于元学习,网上的很多教程不太说人话,大多是根据李宏毅教授的课进行的一个拓展,并没有去详细的讲解一些步骤性的问题; 关于原理或者说概要比较好的博客: https://zhuanlan.zhihu.com/p/108503451 https://zhuanlan.zhihu.com/p ...
矩阵分解(MF)是最流行的产品推荐技术之一,但众所周知,它存在严重的冷启动问题。项目冷启动问题在Tweet推荐等设置中尤其严重,因为新项目会不断到达。本文提出了一种元学习策略来解决新项目连续到达时项目冷启动的问题。我们提出了两种深度神经网络架构来实现我们的元学习策略。第一种结构学习一个线性分类器 ...