本篇介绍一下一阶微分方程的求解方法,以及伯努利方程的特殊求解方法。这个应该是上学时高数课中的内容,现在用到了,温习一下。 顺便感叹一下,时间过得真快。 1. 定义 形如上式的方程称为一阶线性微分方程, 并且当Q(x)恒为零时称为齐次线性方程, Q(x)不恒为零时称为非齐次线性方程 ...
一 由于任何偏微分方程初边值问题通过半离散之后都会转化为两点边值问题,以下仅以两点边值问题开始简要讨论Galerkin Legendre 谱方法的数值实现过程 考虑如下分数阶两点边值问题 begin align amp Delta frac alpha u x f x , quad a lt x lt b, quad lt alpha leq , amp u a , quad u b , end ...
2020-06-23 11:07 0 600 推荐指数:
本篇介绍一下一阶微分方程的求解方法,以及伯努利方程的特殊求解方法。这个应该是上学时高数课中的内容,现在用到了,温习一下。 顺便感叹一下,时间过得真快。 1. 定义 形如上式的方程称为一阶线性微分方程, 并且当Q(x)恒为零时称为齐次线性方程, Q(x)不恒为零时称为非齐次线性方程 ...
当年已经学过了,可是忘光了。从知乎上找到了一个课程,可是和之前老师讲的不一样,在这里说明一下。 求解微分方程,是解一个含有微分的方程。因为含有微分,它和一般的方程可不一样,求解的结果里会具有一个常数\(C\)。若想要去掉这个常数\(C\),需要附加条件。这个附加条件表现为: \[y ...
待求解微分方程如下: 改写: 此时为一阶线性微分方程,通解为: 这个根据公式求解的过程中,的指数项正常不定积分的结果应该是含有常数项的,但是解的过程为什么就没有了常数项?其实是特解。 先看一下一阶线性微分方程的通解公式: 先解对应的齐次线性方程: 求 ...
p47.(实习题-李荣华)用线性元求下列边值问题的数值解 ...
1.2 Euler 方法及其改进方法 1.2.1 Euler 方法 用 \(f(x_n, y_n)\) 代替式 \((1.2)\) 中的 \(\varphi_n\),得到差分方程初值问题: \[\left\{ \begin{align*} & y_{n+1} = y_{n ...
,将这些函数基底的组合作为边界条件下常微分方程的近似解。其中,有限元方法选用的函数基底是局域的(localize ...
用Matlab求解微分方程 解微分方程有两种解,一种是解析解,一种是数值解,这两种分别对应不同的解法 解析解 利用dsolve函数进行求解 1.求解析解 求 的解析解 2.初值问题 求初值问题 3.边界问题 求边界问题 4.高阶方程 求解方程 ...
引言 考虑存在以下二阶偏微分方程 \[\begin{align} f_2 \cdot \ddot{X(t)}+f_1 \cdot \dot{X(t)} +f_0 \cdot {X(t)} =F(t) \end{align} \] 如何使用四阶龙格-库塔法求解该微分方程? 一阶 ...