SVI变分推断的前两篇介绍了变分推断的构造方法、目标函数以及优化算法CAVI,同时上一篇末尾提到,CAVI并不适用于大规模的数据的情况,而这一篇将要介绍一种随机优化(stochastic optimization)的方法。这种优化方法与随机梯度下降(Stochastic Gradient ...
贝叶斯推断由上一篇我们已经了解到,对于未知的分布或者难以计算的问题,我们可以通过变分推断将其转换为简单的可计算的问题来求解。现在我们贝叶斯统计的角度,来看一个难以准确计算的案例。 推断问题可以理解为计算条件概率 p y x 。利用贝叶斯定理,可以将计算条件概率 或者说后验概率,posterior 转换为计算联合概率 joint distribution 和先验概率 prior : begin eq ...
2020-06-22 23:43 0 992 推荐指数:
SVI变分推断的前两篇介绍了变分推断的构造方法、目标函数以及优化算法CAVI,同时上一篇末尾提到,CAVI并不适用于大规模的数据的情况,而这一篇将要介绍一种随机优化(stochastic optimization)的方法。这种优化方法与随机梯度下降(Stochastic Gradient ...
引言GAN专题介绍了GAN的原理以及一些变种,这次打算介绍另一个重要的生成模型——变分自编码器(Variational AutoEncoder,VAE)。但在介绍编码器之前,这里会先花一点时间介绍变分推断(Variational Inference,VI),而这一小系列最后还会介绍贝叶斯神经网络 ...
变分 对于普通的函数f(x),我们可以认为f是一个关于x的一个实数算子,其作用是将实数x映射到实数f(x)。那么类比这种模式,假设存在函数算子F,它是关于f(x)的函数算子,可以将f(x)映射成实数F(f(x)) 。对于f(x)我们是通过改变x来求出f(x)的极值,而在变分中这个x会被替换成一个 ...
(学习这部分内容大约需要花费1.1小时) 摘要 在我们感兴趣的大多数概率模型中, 计算后验边际或准确计算归一化常数都是很困难的. 变分推断(variational inference)是一个近似计算这两者的框架. 变分推断把推断看作优化问题: 我们尝试根据某种距离度量来寻找一个与真实后验尽可 ...
变分推断与变分自编码器 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 本文主要介绍变分自编码器(Variational Auto-Encoder, VAE)及其推导过程,但变分自编码器涉及一些概率统计的基础知识,因此为了更好地理解变分 ...
) 的推断问题,需要在对数函数的内部进行求和(或积分) 注意到,对数边际似然log p(x; θ) ...
本文从最小化KL散度出发,得出变分推断中的优化目标函数ELBO(Evidence Lower Bound Objective),并讨论对ELBO 的理解。 变分推断的推导 假设我们有观测数据 (observations) \(D\),关于参数 (parameter) \(\theta\) 的先验 ...
主讲人 戴玮 (新浪微博: @戴玮_CASIA) Wilbur_中博(1954123) 20:02:04 我们在前面看到,概率推断的核心任务就是计算某分布下的某个函数的期望、或者计算边缘概率分布、条件概率分布等等。 比如前面在第九章尼采兄讲EM时,我们就计算了对数似然函数在隐变量后 ...