张量基本概念: 张量其实就是tensor,和tensorflow里的基础数据结构相同,本质就是N维数组; 张量的提出本质是为了优化底层数学计算速度; C++和python这种解释型语言相比之所以有优越性,本质就是因为所有类似于内置类型的数值都是采用连续内存直接存储; 而python ...
.pytorch主要的包: torch: 最顶层包及张量库 torch.nn: 子包,包括模型及建立神经网络的可拓展类 torch.autograd: 支持所有微分操作的函数子包 torch.nn.functional: 其他所有函数功能,包括激活函数,卷积操作,构建损失函数等 torch.optim: 所有的优化器包,包括adam,sgd等 torch.utils.data: 子包,包括所有处 ...
2020-06-08 17:46 0 1172 推荐指数:
张量基本概念: 张量其实就是tensor,和tensorflow里的基础数据结构相同,本质就是N维数组; 张量的提出本质是为了优化底层数学计算速度; C++和python这种解释型语言相比之所以有优越性,本质就是因为所有类似于内置类型的数值都是采用连续内存直接存储; 而python ...
张量操作 一、张量的拼接与切分 1.1 torch.cat() 功能:将张量按维度dim进行拼接 tensors:张量序列 dim:要拼接的维度 1.2 torch.stack() 功能:在新创建的维度的上进行拼接 tensors:张量序列 dim:要拼接的维度(如果dim为新 ...
1.Broadcasting Broadcasting能够实现Tensor自动维度增加(unsqueeze)与维度扩展(expand),以使两个Tensor的shape一致,从而完成某些操作,主要按照如下步骤进行: 从最后面的维度开始匹配(一般后面理解为小维度); 在前面插入若干维度 ...
1.数据类型 如何表示string? One-hot [0,1,0,0,...] Embedding Word2vec,glove 类型推断 标量 张量 四维适合表示图片类型 eg ...
一、张量的维度操作 1.squezee & unsqueeze 2.张量扩散,在指定维度上将原来的张量扩展到指定大小,比如原来x是31,输入size为[3, 4],可以将其扩大成34,4为原来1个元素的复制 3.转置,torch.transpose 只能 ...
Pytorch tensors (张量) Introduce Pytorch的Tensors可以理解成Numpy中的数组ndarrays(0维张量为标量,一维张量为向量,二维向量为矩阵,三维以上张量统称为多维张量),但是Tensors 支持GPU并行计算,这是其最大的一个优点。 本文 ...
pytorch张量数据类型入门1、对于pytorch的深度学习框架,其基本的数据类型属于张量数据类型,即Tensor数据类型,对于python里面的int,float,int array,flaot array对应于pytorch里面即在前面加一个Tensor即可——intTensor ...
涉及的方法有下面几种: 拼接张量 torch.cat(seq, dim=0, out=None) → Tensor 在指定的维度dim上对序列seq进行连接操作。 参数: seq (sequence of Tensors) - Python序列或相同类型的张量序列 ...