BP神经网络梯度下降算法 目录(?)[+] 菜鸟初学人智相关问题,智商低,艰苦学习中,转文只为保存,其中加上了一些个人注释,便于更简单的理解~新手也可以看,共勉。 转自博客园@ 编程De: http ...
https: blog.csdn.net u article details https: mp.weixin.qq.com s biz MzUxMDg ODg OQ amp mid amp idx amp sn f ec d b ef aa e amp chksm f d c ce ad a be b fe c a f bfe d db b b d d c ed amp mpshare amp ...
2020-06-04 22:28 0 1071 推荐指数:
BP神经网络梯度下降算法 目录(?)[+] 菜鸟初学人智相关问题,智商低,艰苦学习中,转文只为保存,其中加上了一些个人注释,便于更简单的理解~新手也可以看,共勉。 转自博客园@ 编程De: http ...
Theory for f : \(\mathbb{R}^{n} \mapsto \mathbb{R}\) 先定义一个标识:scalar-product \(\langle a | b\rangle= ...
系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI, 点击star加星不要吝啬,星越多笔者越努力。 第2章 神经网络中的三个基本概念 2.0 通俗地理解三大概念 这三大概念是:反向传播,梯度下降,损失函数。 神经网络训练的最基本的思想就是:先“猜 ...
https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度学习的路上,从头开始了解一下各项技术。本人是DL小白,连续记录我自 ...
一、序言 动量梯度下降也是一种神经网络的优化方法,我们知道在梯度下降的过程中,虽然损失的整体趋势是越来越接近0,但过程往往是非常曲折的,如下图所示: 特别是在使用mini-batch后,由于单次参与训练的图片少了,这种“曲折”被放大了好几倍。前面我们介绍过L2 ...
在求解神经网络算法的模型参数,梯度下降(Gradient Descent)是最常采用的方法。下面是我个人学习时对梯度下降的理解,如有不对的地方欢迎指出。 1、✌ 梯度定义 微积分我们学过,对多元函数的各个变量求偏导数,把求得的各个参数的偏导数以向量的形式 ...
本文总结自《Neural Networks and Deep Learning》第1章的部分内容。 使用梯度下降算法进行学习(Learning with gradient descent) 1. 目标 我们希望有一个算法,能让我们找到权重和偏置,以至于网络的输出y(x) 能够拟合所有 ...
在FNN(DNN)的前向传播,反向梯度推导以及代码验证中,我们不仅总结了FNN(DNN)这种神经网络结构的前向传播和反向梯度求导公式,还通过tensorflow的自动求微分工具验证了其准确性。在本篇章,我们将专门针对CNN这种网络结构进行前向传播介绍和反向梯度推导。更多相关内容请见《神经网络的梯度 ...