一、基本概念 偏微分方程:我们将只含有未知多元函数及其偏导数的方程称为偏微分方程。方程中出现的位置函数偏导数的最高阶数称为偏微分方程的阶。如果方程中对于未知函数和它的所有偏导数都是线性的,这样的方程称为线性偏微分方程,否则称其为非线性偏微分方程。特别的,在非线性偏微分方程中 ...
微分方程中有两个地方用到齐次: 形如y f y x 的方程称为 齐次方程 ,这里是指方程中每一项关于x y的次数都是相等的,这个是指dy dx是 次齐次函数。 形如y py qy 的方程称为 齐次线性方程 ,这里 齐次 是指方程中每一项关于未知函数y及其导数y ,y , 的次数都是相等的 都是一次 ,而方程y py qy x就不是 齐次 的,因为方程右边的项x不含y及y的导数,是关于y,y ,y ...
2020-05-30 09:14 0 2824 推荐指数:
一、基本概念 偏微分方程:我们将只含有未知多元函数及其偏导数的方程称为偏微分方程。方程中出现的位置函数偏导数的最高阶数称为偏微分方程的阶。如果方程中对于未知函数和它的所有偏导数都是线性的,这样的方程称为线性偏微分方程,否则称其为非线性偏微分方程。特别的,在非线性偏微分方程中 ...
1.定义 关于未知函数 \(u=u(x_1,x_2,...,x_m)(m>2)\)的偏微分方程是指$$F=(x,u,u_{x_1},...,u_{x_m},u_{x_1x_1},..,u_{x_1x_m},...)$$即,F是\(x,u\),以及\(u\)的有限个偏微商的函数. n阶 ...
1.2 基本概念和常微分方程的发展史 自变量、未知函数均为实值的微分方程称为实值微分方程;未知函数取复值或变量及未知函数均取复值时称为复值微分方程。若无特别声明,以下均指实变量的实值微分方程。 1.2.1 常微分方程基本概念 (1) 常微分方程和偏微分方程 ...
,可以参考这篇文章常微分方程的常见题型与解法 一、常微分方程 在matlab中,命令dsolve专用 ...
微分方程 1.知识梳理: 关于微分方程,考研中会存在以下几种形式。 1.可分离变量(分离) \[\frac {dy}{dx} = f_1(x) * f_2(y) \] 2.齐次(替换分离) \[\frac {dy}{dx} = f(x, y) \] 3.一阶齐次线性 ...
,Riccati方程不能用初等积分方法求出它的通解,如果知道它的一个特解,就可以用初等积分方法求出通解 ...
目的 快速的求二次非齐次方程的特解,记得最后验算下 求解过程 \(y''+py'+qy=f(x)\) ,我们令\(D\)为求导符号比如\(y''=D^2y\),令\(\dfrac{1}{D}\)为积分符号 则\(y''+py'+qy=(D^2+pD+q)y=f(x)\) ,\(y ...
本文写于资格考试前前夕,权以浅浅谈当整理复习 稳定性讨论主要基于 Finite Difference Methods for Ordinary and Partial Differentia ...