本篇博客的图源来自 zhwhong,转载仅作学习使用! 在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion ...
https: zhwhong.cn ROC AUC Precision Recall analysis 在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵 confusion matrix 的工具,它可以帮助人们更好地了解分类中的错误。 比如有这样一 ...
2020-05-28 16:07 0 628 推荐指数:
本篇博客的图源来自 zhwhong,转载仅作学习使用! 在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion ...
分类器性能指标之ROC曲线、AUC值 一 roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例 ...
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一、机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对 ...
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1、混淆矩阵 True Positive(真正,TP):将正类预测 ...
五、衡量分类任务的性能指标 5、ROC曲线与AUC (1)ROC曲线 ROC曲线( Receiver Operating Cha\fracteristic Curve )描述的 TPR ( True Positive Rate )与 FPR ( False Positive ...
混淆矩阵、准确率、召回率、ROC曲线、AUC 假设有一个用来对猫(cats)、狗(dogs)、兔子(rabbits)进行分类的系统,混淆矩阵就是为了进一步分析性能而对该算法测试结果做出的总结。假设总共有 27 只动物:8只猫, 6条狗,13只兔子。结果的混淆矩阵如上图所示,我们可以发现 ...
一. ROC曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴:负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例 ...
准确率、精确率(查准率)、召回率(查全率)、F1值、ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标 ...