1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
目录 transformer GPT bert RoBERTa ALBERT spanBert xlnet transformer transformer就是大名鼎鼎的论文 Attention Is All You Need ,其在一些翻译任务上获得了SOTA的效果。其模型整体结构如下图所示 encoder和decoder 其整体结构由encoder和decoder组成,其中encoder由 个 ...
2020-06-17 10:32 0 2519 推荐指数:
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列: word2vec预训练词向量 textCNN 模型 charCNN 模型 Bi-LSTM 模型 ...
CNN模型将输入进行卷积操作,并利用K-MAX pooling操作,最终将变长的文本序列输出为定长的序 ...
目录 1、RNN和LSTM简介 2、tree-LSTM模型 Child-Sum Tree-LSTMs N-ary Tree-LSTMs 3、MT-LSTM 4、topicRNN 1、RNN和LSTM简介 首先我们来简要 ...
目录 1、HAN 2、inner-attention for NLI 3、Attentive Pooling 4、LEAM 5、DRCN 6、ABCNN ...
近期阅读了一些深度学习在文本分类中的应用相关论文(论文笔记),同时也参加了CCF 大数据与计算智能大赛(BDCI)2017的一个文本分类问题的比赛:让AI当法官,并取得了最终评测第四名的成绩(比赛的具体思路和代码参见github项目repo)。因此,本文总结了文本分类相关的深度学习模型、优化 ...
代码仓库: https://github.com/brandonlyg/cute-dl 目标 上阶段cute-dl已经可以构建基础的RNN模型。但对文本相模型的支持不够友好, 这个阶段的目标是, 让框架能够友好地支持文本分类和本文生成任务。具体包括: 添加嵌入层 ...
实战:https://github.com/jiangxinyang227/NLP-Project 一、简介: 1、传统的文本分类方法:【人工特征工程+浅层分类模型】 (1)文本预处理: ①(中文) 文本分词 正向/逆向/双向最大匹配 ...
1.bow_net模型 embeding之后对数据进行unpad操作,切掉一部分数据。fluid.layers.sequence_unpad的作用是按照seq_len各个维度进行切分,如emb 为[3,128], unpad(sql_len=[60,80,100])操作后 切分后 ...