快去膜神仙 特征多项式 定义一个大小为$ k$矩阵$ M$的特征多项式$ P$要求满足 $$ \sum_{i=0}^k P_iM^i=0$$ 其中$ 0$是一个全$ 0$矩阵 Cayley-Hamilton定理 一个矩阵$ P$的特征多项式为 $$P(\lambda ...
零化多项式 特征多项式 最小多项式 常系数线性齐次递推 约定: I n 是 n 阶单位矩阵,即主对角线是 的 n 阶矩阵 一个矩阵 A 的 A 是 A 的行列式 默认 A 是一个 n times n 的矩阵 定义 零化多项式: 对于一个矩阵 A ,它的一个零化多项式 f lambda 是满足 f A 的多项式,定义域包含矩阵 最小多项式:次数最低的零化多项式 特征多项式 对于一个 n 阶的矩阵 A ...
2020-05-24 11:06 0 3079 推荐指数:
快去膜神仙 特征多项式 定义一个大小为$ k$矩阵$ M$的特征多项式$ P$要求满足 $$ \sum_{i=0}^k P_iM^i=0$$ 其中$ 0$是一个全$ 0$矩阵 Cayley-Hamilton定理 一个矩阵$ P$的特征多项式为 $$P(\lambda ...
特征多项式与常系数线性齐次递推 一般来说,这个东西是用来优化能用矩阵乘法优化的递推式子的。 通常,这种递推式子的特征是在齐次的条件下,转移系数也可以通过递推得到。 对于这样的递推,通常解法为$O(NK)$的递推或者$O(k^3\log n)$的矩阵乘法,但是有些**毒瘤**的出题人~~吉老师 ...
多项式特征(在原有特征的基础上进行变换得到的特征),使用多项式回归,设置当前degree为5 ...
矩阵: 求其最小多项式: 首先求A的特征多项式: 右上边的定义可知,最小多项式可能是下列两种情况之一: 根据本节来时的讨论知最小多项式p满足p(A)=0 将A分别带入上边两个多项式: 于是最小多项式为: ...
文章没有写完,近期填完这坑 参考文章: https://www.luogu.com.cn/blog/froggy/duo-xiang-shi-tai-za-hui https://www.cnb ...
。 它的实质是离散情况下的最小平方趋近,基本思想和处理方法也具有相似性。其几何解释是:求一条曲 ...
调了很久,一直蜜汁错误,然而结果是b数组没有及时清零…… 前置技能:多项式求逆。 简单讲一下牛顿迭代(推导详见picks博客,前置技能是泰勒公式): 求多项式F(x),使得G(F(x))≡0 (mod x^n)。方法倍增。 设已知多项式F_t满足G(F_t(x))≡0 (mod x(2t ...
多项式的相加 一、案例分析 假如说我们现在有下面两个多项式: ①A(x)=3x2+4x5+5x3-x1 ②B(x)=4x3+7x2+3x1 这两个多项式在计算机中用链表的来存储 根据多项式相加的运算规则:对两个多项式中所有指数相同的项,对应系数想加,若其和不为 ...