很多人都听说过贝叶斯原理,在哪听说过?基本上是在学概率统计的时候知道的。有些人可能会说,我记不住这些概率论的公式,没关系,我尽量用通俗易懂的语言进行讲解。 /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://www.cnblogs.com/jpcflyer/p ...
一 概率基础 概率定义:概率定义为一件事情发生的可能性,例如,随机抛硬币,正面朝上的概率。 联合概率:包含多个条件,且所有条件同时成立的概率,记作: , 。 条件概率:事件A在另外一个事件B已经发生条件下的发生概率,记作: 。P A ,A B P A B P A B ,需要注意的是:此条件概率的成立,是由于A ,A 相互独立的结果。 二 朴素贝叶斯介绍 公式: 朴素贝叶斯公式 其中,w为给定文档 ...
2020-05-20 11:42 0 559 推荐指数:
很多人都听说过贝叶斯原理,在哪听说过?基本上是在学概率统计的时候知道的。有些人可能会说,我记不住这些概率论的公式,没关系,我尽量用通俗易懂的语言进行讲解。 /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https://www.cnblogs.com/jpcflyer/p ...
朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法。对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是直接学习出特征输出Y和特征X之间的关系,要么是决策函数 ...
Naive Bayes-朴素贝叶斯 Bayes’ theorem(贝叶斯法则) 在概率论和统计学中,Bayes’ theorem(贝叶斯法则)根据事件的先验知识描述事件的概率。贝叶斯法则表达式如下所示 P(A|B) – 在事件B下事件A发生的条件概率 P(B|A) – 在事件A下事件B发生 ...
总结 贝叶斯算法 我们希望模型在分类的时候不是直接返回分类,而是返回属于某个分类的概率 特征与特征之间条件独立(特征之间无任何关联),就可以使用贝叶斯算法,朴素指的就是条件独立 朴素贝叶斯模型常用于文本分类 在sk-learn中提供了三种不同类型的贝叶斯模型算法 ...
注:本系列所有博客将持续更新并发布在github上,您可以通过github下载本系列所有文章笔记文件 1 引言 说到朴素贝叶斯算法,很自然地就会想到贝叶斯概率公式,这是我们在高中的时候就学过的内容,没错,这也正是朴素贝叶斯算法的核心,今天我们也从贝叶斯概率公式开始,全面撸一撸朴素贝叶斯算法 ...
和 X 同时发生的概率一样。 2 朴素贝叶斯定理 朴素贝叶斯的经典应用是对垃圾邮件的过滤,是对文 ...
1. 贝叶斯定理 条件概率公式: 这个公式非常简单,就是计算在B发生的情况下,A发生的概率。但是很多时候,我们很容易知道P(A|B),需要计算的是P(B|A),这时就要用到贝叶斯定理: 2. 朴素贝叶斯分类 朴素贝叶斯分类的推导过程就不详述了,其流程可以简单的用一张图来表示 ...
朴素贝叶斯之所以叫朴素,是因为它假定了所有的属性之间是独立的。下面我们就分别说说,属性值是离散和连续值的朴素贝叶斯对问题的求解方法吧。 1 贝叶斯定理 贝叶斯定理最大的用处是在很多情况下,我们需要求的概率是后验概率P(B|A),很难直接求解,但是他的先验概率P ...