周志华老师的《机器学习》是一本非常难得的国内学者的好教材。为了好好学习,博主决定啃一啃周老师书中的课后习题。本人答案仅供参考,若有错误,请大神们不吝指教。(本系列文章实时更新) 1.试证明对于不含冲突数据(即特征向量完全相同但标记不同)的训练集,必存在与训练集一致(即训练误差为0)的决策树 ...
周志华老师的《机器学习》是一本非常难得的国内学者的好教材。为了好好学习,博主决定啃一啃周老师书中的课后习题。本人答案仅供参考,若有错误,请大神们不吝指教。(本系列文章实时更新) 1.试证明对于不含冲突数据(即特征向量完全相同但标记不同)的训练集,必存在与训练集一致(即训练误差为0)的决策树 ...
七、多变量决策树 1、从“树”到“规则” 一棵决策树对应于一个“规则集”,每个从根结点到叶结点的分支路径对应于一条规则。 举例: 好处: (1)改善可理解性 (2)进一步提升泛化能力( 由于转化过程中通常会进行前件合并、泛化等操作 ...
一、决策树模型 决策树(decision tree)是一种常用的机器学习方法,是一种描述对实例进行分类的树形结构。 决策树是一种常用的机器学习方法,以二分类为例,假设现在我们要对是否买西瓜进行判断和决策,我们会问一些问题,根据回答,我们决断是买还是不买,或者还拿补丁主意,这时会继续 ...
参考书籍:《机器学习》(周志华) 说 明:本篇内容为读书笔记,主要参考教材为《机器学习》(周志华)。详细内容请参阅书籍——第4章 决策树。部分内容参考网络资源,在此感谢所有原创者的工作 ...
决策树是一个函数,以属性值向量作为输入,返回一个“决策”。 如上图,我们输入一系列属性值(天气状况,湿度,有无风)后会得到一个要不要出去玩的一个决策。 从样例构建决策树 对于原始样例集,我们选取一个最好的属性将其分裂,这样我们会产生多个样例子集,同时我们会把该属性从属性集去掉,并且继续 ...
一.简介 决策树学习是一种逼近离散值目标函数的方法,在这种方法中学习到的函数被表示为一棵决策树。 二.决策树的表示法 决策树通过把实例从艮节点排列到某个叶子结点来分类实例,叶子结点即为实例所属的分类。树上的每一个结点指定了对实例的某个属性的测试,并且该结点的每一个后继分支对应于该属性 ...
,在这些机器根据数据集创建规则是,就是机器学习的过程。 二,相关知识 1 决策树算法 在 ...
机器学习之决策树的构建与剪枝 最近在面试中被问到决策树的知识,当时一脸懵逼,内心OS:“什么?我明明找的是计算机视觉算法岗位,决策树什么的除了刚入学看过一点,现在也全忘了啊!”,于是面试毫无意外的挂掉了。不过一码归一码,我下决心再把机器学习的相关知识复习起来,增加自己相关能力的同时以备不时之需 ...