https://zhuanlan.zhihu.com/p/22692029 Statsmodels 是 Python 中一个强大的统计分析包,包含了回归分析、时间序列分析、假设检验等等的功能。Statsmodels 在计量的简便性上是远远不及 Stata 等软件的,但它的优点 ...
原文链接:https: www.joinquant.com view community detail ab a ecda c de e a db Statsmodels 是 Python 中一个强大的统计分析包,包含了回归分析 时间序列分析 假设检验等等的功能。Statsmodels 在计量的简便性上是远远不及 Stata 等软件的,但它的优点在于可以与 Python 的其他的任务 如 Num ...
2020-05-11 13:03 0 2241 推荐指数:
https://zhuanlan.zhihu.com/p/22692029 Statsmodels 是 Python 中一个强大的统计分析包,包含了回归分析、时间序列分析、假设检验等等的功能。Statsmodels 在计量的简便性上是远远不及 Stata 等软件的,但它的优点 ...
摘要:本文分别介绍了线性回归、局部加权回归和岭回归,并使用python进行了简单实现。 在这之前,已经学习过了Logistic回归,今天继续看回归。首先说一下回归的由来:回归是由达尔文的表兄弟Francis Galton发明的。Galton于1877年完成了第一次回归预测,目的 ...
依旧是唠叨一下:考完试了,该去实习的朋友都去实习了。这几天最主要的事情应该是把win10滚回到win7了,真的还是熟悉的画面,心情好了很多。可惜自己当初安装的好多软件都写入了注册表导致软件用不了,好处 ...
从统计学的角度来看,机器学习大多的方法是统计学中分类与回归的方法向工程领域的推广。 “回归”(Regression)一词的滥觞是英国科学家Francis Galton(1822-1911)在1886年的论文[1]研究孩子身高与父母身高之间的关系。观察1087对夫妇后,得出成年儿子身高 ...
输出是一个连续的数值。 模型表示 对于一个目标值,它可能受到多个特征的加权影响。例如宝可梦精灵的进化的 cp 值,它不仅受到进化前的 cp 值的影响,还可能与宝可梦的 hp 值、类型、高度以及重量 ...
线性回归创建模型需要拟合所有的样本点(局部加权线性回归除外)。当数据拥有众多特征并且特征之间关系十分复杂的时候,构建全局模型的想法就显得太难了,也略显笨拙。而且,实际生活中很多问题都是非线性的,不可能使用全局限性模型来拟合任何数据。 一种可行的方法是将数据集切分成很多份易建模的数据 ...
唠嗑唠嗑 依旧是每一次随便讲两句生活小事。表示最近有点懒,可能是快要考试的原因,外加这两天都有笔试和各种面试,让心情变得没那么安静的敲代码,没那么安静的学习算法。搞得第一次和技术总监聊天的时候都不太懂装饰器这个东东,甚至不知道函数式编程是啥;昨天跟另外一个经理聊天的时候也是没能把自己学习 ...
回归算法 回归是统计学中最有力的工具之一。机器学习监督学习算法分为分类算法和回归算法两种,其实就是根据类别标签分布类型为离散型、连续性而定义的。回归算法用于连续型分布预测,针对的是数值型的样本,使用回归,可以在给定输入的时候预测出一个数值,这是对分类方法的提升,因为这样可以预测连续型数据 ...