原文:11.理解分类与监督学习、聚类与无监督学习。

.理解分类与监督学习 聚类与无监督学习。 简述分类与聚类的联系与区别。 联系:分类与聚类都是通过预处理使得数据能基于一个分析目标而被整理。 区别:分类是有监督,靠的是学习 聚类无监督,靠的是启发式搜索。 简述什么是监督学习与无监督学习。 有监督学习:事先知道训练样本的标签,通过挖掘将属于不同类别标签的样本分开,可利用得到的分类模型,预测样本属于哪个类别 无监督学习:事先不知道样本的类别标签,通过 ...

2020-05-10 17:47 0 775 推荐指数:

查看详情

监督学习聚类2——DBSCAN

根据学生月上网时间数据运用DBSCAN算法计算: #coding=utf-8 import numpy as np import sklearn.cluster as skc from skl ...

Sun Nov 05 00:14:00 CST 2017 3 812
监督学习-- 聚类(Clustering)

监督学习(unsupervised learning)介绍 聚类(Clustering) ​ 回顾之前的有监督学习,根据给出的数据集(已经做出标记labels)\({(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),...,(x^{(m)},y^{(m)})}\),学习 ...

Thu Jul 13 23:22:00 CST 2017 0 28025
监督学习

等应用  机器学习分类     监督学习 (Supervised Learning)       ...

Fri May 19 17:41:00 CST 2017 1 15963
监督学习分类——???

监督学习 主动学习 用已标记样本训练出一个模型,用模型对未标记样本进行预测,选出对改善性能有帮助(比如选出那些不太确定的未标记样本)的样本,向专家征求最终标记的意见,并将专家意见作为标记,将该样本加入训练集得出新模型,不断重复这个工作。 关键:外界因素,即专家经验 ...

Tue Apr 07 22:40:00 CST 2020 1 3205
监督学习监督学习区别

机器学习分为:监督学习监督学习,半监督学习(也可以用hinton所说的强化学习)等。 监督监督区别: 1. 有监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律。而非监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。 2. ...

Wed May 15 00:33:00 CST 2019 0 2001
监督学习监督学习

    机器学习的常用方法,主要分为有监督学习(supervised learning)和监督学习(unsupervised learning)。监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型 ...

Sun Nov 13 22:52:00 CST 2016 0 1756
什么是有监督学习监督学习

  监督学习,就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力。在人 ...

Fri Apr 12 02:17:00 CST 2019 0 826
监督学习监督学习的区别

监督学习监督学习两者的区别: 1.有标签就是有监督学习,没有标签就是监督学习,说的详细一点,有监督学习的目的是在训练集中找规律,然后对测试数据运用这种规律,而无监督学习没有训练集,只有一组数据,在该组数据集内寻找规律。 2. 监督学习方法在寻找数据集中的规律性,这种规律性并不一定 ...

Thu Apr 08 05:32:00 CST 2021 0 1894
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM