拉格朗日 次梯度法(转) https://blog.csdn.net/robert_chen1988/article/details/41074295 对于非线性约束问题: 若非线性约束难于求导,则不能用K-T求解该问题,可考虑用拉格朗日次梯度法 ...
Using subgradient method to solve lasso problem The problem is to solve: underset beta operatorname minimize left frac N sum i N left y i z i beta right lambda beta right Subgradient Optimality: in pa ...
2020-05-10 17:30 0 631 推荐指数:
拉格朗日 次梯度法(转) https://blog.csdn.net/robert_chen1988/article/details/41074295 对于非线性约束问题: 若非线性约束难于求导,则不能用K-T求解该问题,可考虑用拉格朗日次梯度法 ...
次梯度方法 次梯度方法(subgradient method)是传统的梯度下降方法的拓展,用来处理不可导的凸函数。它的优势是比传统方法处理问题范围大,劣势是算法收敛速度慢。但是,由于它对不可导函数有很好的处理方法,所以学习它还是很有必要的。 次梯度(subgradient) 1. ...
=x^2$在点$x=0$的梯度方向,也是唯一的次梯度方向。上面右图的三条红线都是函数$y=|x|$在点$ ...
Start with the SVD decomposition of $x$: $$x=U\Sigma V^T$$ Then $$\|x\|_*=tr(\sqrt{x^Tx})=tr(\sqrt ...
在上一篇博客中,我们介绍了次梯度,本篇博客,我们将用它来求解优化问题。 优化目标函数: $min \frac{1}{2} ||Ax-b||_2^2+\mu ||x||_1$ 已知$A, b$,设定一个$\mu$值,此优化问题表示用数据矩阵$A$的列向量的线性组合去拟合目标向量$b$,并且解 ...
最优化问题中常常需要求解目标函数的最大值或最小值,比如SVM支持向量机算法需要求解分类之间最短距离,神经网络中需要计算损失函数的最小值,分类树问题需要计算熵的最小或最大值等等。如果目标函数可求导常用梯度法,不能求导时一般选用模式搜索法。 一、梯度法求解最优问题 由数学分析知识可以知道 ...
根据 使用最大似然法来求解线性模型(2)-为什么是最大化似然函数? 中提到,某个随机变量tn的 条件概率 服从均值为wT*xn,方差为σ2的正态分布。 现在假设有N个样本点,它们的联合概率密度为: 由于在给定了w和σ2的条件下,tn之间是相互独立的。即:在给定的 w ...
在Coursera机器学习课程中,第一篇练习就是如何使用最小均方差(Least Square)来求解线性模型中的参数。本文从概率论的角度---最大化似然函数,来求解模型参数,得到线性模型。本文内容来源于:《A First Course of Machine Learning》中的第一章和第二章 ...