文章归纳于 直接计算法 若能求出一个具体的值就说明收敛。适用于被积函数的原函数易求得时。 比较审敛法 无穷限反常积分 瑕积分 极限审敛法 无穷限反常积分 瑕积分 阿贝尔判别法 无穷限反常积分收敛性的阿贝尔判别法 若\(\int_ ...
判断反常积分收敛有四种常用方法: 比较判别源法 Cauchy判别法 Abel判别法 Dirichlet 判别法 一 判断非负函数反常积分的收敛: 比较判别问法 Cauchy判别法 二 判断一般函数反常积分的收敛: Abel判别法 Dirichlet判别法 三 判断无界函数反常积分的收敛: Cauchy判别法 Abel判别法 Dirichlet 判别法 ...
2020-05-09 08:48 0 26776 推荐指数:
文章归纳于 直接计算法 若能求出一个具体的值就说明收敛。适用于被积函数的原函数易求得时。 比较审敛法 无穷限反常积分 瑕积分 极限审敛法 无穷限反常积分 瑕积分 阿贝尔判别法 无穷限反常积分收敛性的阿贝尔判别法 若\(\int_ ...
反常积分和变限求导积分都是由定积分推出来的 反常积分如果收敛,则可以用奇偶性 上下限为无穷,奇函数积分,不一定是对称的,因为无穷可以无限加,无法定量 但是取两个定值(-R, R),R趋向于∞,这个就不一样了,R是个定值,积分就是0了 第二条,假设f(x)=x ...
看了汤老师的直播视频,在本模块觉得他将定理完全以数学语言描述出,有些过于复杂不方便记忆,且将每一个定理均进行证明(如果对极限定义掌握很好,可以去看一下),说实话记不住hhh,这里自己根据班上课堂内容记出一套总结笔记:主要需要掌握非混合型反常积分结论和两个重要极限,以及一些放缩技巧,结合同济教材题目 ...
目录 1. 字符串的转换 1.1 简单点,使用高阶函数来完成 1.2 从后往前循环字符串数组 1.3 以中间数为节点,判断左右两边首尾是否相等 2. 数字转换 2.1 求模得尾数,除10得整数 判断 ...
...
typeof:使用typeof可以很方便的判断六种类型:undefined、boolean、string、number、object、function 数组和null会被判断为object类型 instanceof:instanceof判断对象是某类型的实例,他可以很方便的判断出数组和null ...
我们已经学习了有限区间上的积分,但对于无穷的情况和区间上有奇点的情况仍无法理解。这就需要无穷积分和瑕积分来处理了,它们看起来十分有趣。 增长和衰减速率 通过上一章的内容,我们已经可以做出一些总结,在洛必达法则中,如果f(x) << g(x)且f,g > 0,那么当x ...
目录 极限理论的意义 随机变量的收敛性 一些定义与记号 依概率收敛 几乎处处收敛 r阶矩收敛 依分布收敛 几种收敛间的关系 \(O\) 和\(o\) 连续映射定理 Slutsky定理 ...