集合 递减集合列 递增集合列 上极限集 下极限集 集合语言的相互转化 任意: 交集 存在:并集 映射 单射: 一对一 满射: 每个元素都有对应的像 对等: 若存在一个A->B的映射,可以把A,B中所有的元素一一联系起来,则称为A~B ...
实变函数 集合论 . 集合的运算 一 并与交 i 满足结合律,交换律 ii 分配律 A cap bigcup limits alpha in I B alpha bigcup limits alpha in I A cap B alpha A cup bigcap limits alpha in I B alpha bigcap limits alpha in I A cup B alpha 二 ...
2020-05-05 13:06 0 862 推荐指数:
集合 递减集合列 递增集合列 上极限集 下极限集 集合语言的相互转化 任意: 交集 存在:并集 映射 单射: 一对一 满射: 每个元素都有对应的像 对等: 若存在一个A->B的映射,可以把A,B中所有的元素一一联系起来,则称为A~B ...
实变函数这门课应该是我这学期最为困难的一门课,因此更需要加把劲去学习。 这门课一开始是从定积分的定义出发的,我们知道求曲边梯形面积一共分为4步:(1)划分区间;(2)对每个小区间$[x_{i-1},x_{i}]$上选定一点$\xi _{i}$计算$f(\xi _{i})$;(3)对每个 ...
证明1 1-1 若\(E\)是开集,则\(E^c\)是闭集。 设\(\{x_k\}\in E^c\)使得\(x_k\to y\)。若\(y\in E\),则因\(E\)是开集,存在某\ ...
证明2 2-1 单点的外测度为\(0\),矩体的外测度为它的体积。 单点集的外测度为\(0\)是因为,可作一开矩体,使得\(x_0\in I\)且\(|I|\)任意小。 设\(I\) ...
【实变函数】3. 可测函数 本章介绍可测函数,是勒贝格积分的主体,它与阶梯函数、连续函数、多项式等都有一定的联系。文中所提到的证明点此查看。 目录 【实变函数】3. 可测函数 1. 可测函数 2. 可测函数列的收敛 3. 依测度收敛 ...
例题(三) 主题:\(\mathbb{R}^n\)上的拓扑 例1 设\(F\)是\(\mathbb{R}^n\)中的有界闭集,\(G\)是\(\mathbb{R}^n\)中开集且\(F\s ...
【实变函数】5. 微分与积分 本文主要就微积分基本定理的表现形式与成立条件进行讨论,我们将积分区域局限于\(\mathbb{R}\)。文中所提到的证明点此查看。 目录 【实变函数】5. 微分与积分 1. 单调函数与有界变差函数 2. 不定积分 ...
【实变函数】2. 测度理论 本文对测度理论进行介绍,这一部分是勒贝格积分的基础,承上启下。文中所提到的证明点此查看。 目录 【实变函数】2. 测度理论 1. 外测度 2. 可测集 3. 正测度集 4. 不可测集 ...