原文:机器学习之主成分分析(PCA&特征选择)

描述出其本身的含义 特征选择 特征选择对于数据科学家 机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点 底层结构,这对进一步改善模型 算法都有着重要作用。 特征选择主要有两个功能: 减少特征数量 降维,使模型泛化能力更强,减少过拟合 增强对特征和特征值之间的理解 拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。 PCA PCA是一种数学降维方法,利 ...

2020-05-01 11:08 0 968 推荐指数:

查看详情

机器学习之主成分分析

成分分析 (principal component analysis, PCA) 是投影法的典型代表。投影法是指将高维的数据向低维投影,投影的方向可通过特征分析等方法来确定。 具体来说,假设我们有一个具有 \(n\) 维特征的数据集,共有 \(m\) 个样本点,我们希望这 \(m\) 个样本 ...

Fri Nov 08 02:11:00 CST 2019 0 298
成分分析PCA特征选择算法详解

1. 问题 真实的训练数据总是存在各种各样的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余。 2、 拿到一个数学系的本科生期末考试成绩单,里面有三列,一列是对数学的兴趣程度,一列是复习 ...

Tue Apr 26 23:56:00 CST 2016 0 21246
机器学习降维之主成分分析

1. 主成分基本思想 主成分基本思想:在主成分分析中,首先对给定数据进行规范化,使得数据每一个变量的平均值维0,方差为1,之后对数据进行正交变换,原来由线性相关变量表示的数据,通过正交变换变成由若干个线性无关的新变量表示的数据。新变量是可能的正交变换中变量的方差的和最大的,方差表示了新变量上信息 ...

Thu Jul 18 21:40:00 CST 2019 0 1179
机器学习之路:python 特征降维 主成分分析 PCA

python3 学习api使用 主成分分析方法实现降低维度 使用了网络上的数据集,我已经下载到了本地,可以去我的git上参考 git:https://github.com/linyi0604/MachineLearning 代码: ...

Mon Apr 30 18:21:00 CST 2018 0 3659
机器学习PCA成分分析

,可以解释为这两个变量反 映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,将重复的变量(关 ...

Thu Aug 31 01:39:00 CST 2017 0 9508
机器学习作业---主成分分析PCA

------------------------------PCA简单使用------------------------------ 一:回顾PCA (一)主成分分析法是干什么用的? 数据降维,话句话说就是将数据地特征数量变少,但又不是简单地删除特征。 数据降维地目的可以是压缩数据,减少 ...

Sat May 23 19:41:00 CST 2020 0 576
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM