背景与原理: 聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习 ...
机器学习基础:Kmeans算法及其优化 CONTENT 算法原理 算法流程 算法优化 Kmeans Elkan Kmeans Mini Batch Kmeans 与KNN的区别 算法小结 sklearn代码实践 . 算法原理 对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。即: 假设簇划分为 C ,C ,...C k ,则我们的 ...
2020-04-25 12:03 0 1127 推荐指数:
背景与原理: 聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习 ...
1、K-Means原理 K-Means算法的基本思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: \[E ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第12篇文章,我们一起来看下Kmeans聚类算法。 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公式找到最近的K个邻居,通过邻居的结果来推测当前的结果。今天我们要来看的算法同样 ...
无标签数据集可视化,将第一列feature作为X,第二列feature作为y 构造 kmeans from sklearn.cluster import KMeans #init kmeans = KMeans(init='k-means++ ...
class sklearn.cluster.KMeans (n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001,precompute_distances=’auto’, verbose ...
1. 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向 ...
,所以也被称为“最速下降法”。最速下降法越接近目标值,步长越小,前进越慢。 在机器学习中,基于基本的梯度下 ...