概率图分为有向图(bayesian network)与无向图(markov random filed)。在概率图上可以建立生成模型或判别模型。有向图多为生成模型,无向图多为判别模型。 判别模型(Discriminative Model),又可 ...
.生成模型与判别模型区别 生成模型:学习得到联合概率分布P x,y ,即特征x和标记y共同出现的概率,然后求条件概率分布。能够学习到数据生成的机制。 判别模型:学习得到条件概率分布P y x ,即在特征x出现的情况下标记y出现的概率。 数据要求:生成模型需要的数据量比较大,能够较好地估计概率密度 而判别模型对数据样本量的要求没有那么多。 典型的判别模型:k近邻,感知机,决策树,逻辑斯蒂回归 逻辑 ...
2020-04-24 12:00 0 681 推荐指数:
概率图分为有向图(bayesian network)与无向图(markov random filed)。在概率图上可以建立生成模型或判别模型。有向图多为生成模型,无向图多为判别模型。 判别模型(Discriminative Model),又可 ...
作者:szx_spark 监督学习可以分为生成方法与判别方法,所学到的模型可以分为生成模型与判别模型。 生成模型 生成模型由数据学习联合概率分布\(P(X,Y)\),然后求出条件概率分布\(P(Y|X)\)作为预测的模型,即生成模型: \[P(Y|X)=\frac{P(X ...
引入 监督学习的任务就是学习一个模型(或者得到一个目标函数),应用这一模型,对给定的输入预测相应的输出。这一模型的一般形式为一个决策函数Y=f(X),或者条件概率分布P(Y|X)。 监督学习方法又可以分为生成方法(generative approach)和判别方法 ...
生成模型(Generative)和判别模型(Discriminative) 引言 最近看文章《 A survey of appearance models in visual object tracking》( XiLi,ACMTIST,2013),在文章 ...
https://www.cnblogs.com/realkate1/p/5683939.html 生成模型(Generative)和判别模型(Discriminative) 引言 最近看文章《 A survey of appearance models ...
根据网上的相关博客总结了一下机器学习中的这两个概念,参考博客见文末。 生成模型:无穷样本==》概率密度模型 = 生成模型==》预测 判别模型:有限样本==》判别函数 = 预测模型==》预测 机器学习中的模型一般分为两类:判别模型、生成模型,这是对问题的两种不同的审视角度。 假设 ...
一、引言 本材料参考Andrew Ng大神的机器学习课程 http://cs229.stanford.edu 在上一篇有监督学习回归模型中,我们利用训练集直接对条件概率p(y|x;θ)建模,例如logistic回归就利用hθ(x) = g(θTx)对p(y|x;θ)建模(其中g(z ...
判别式模型(discriminative model) 产生式模型(generative model) 特点 寻找不同类别之间的最优分类面,反映的是异类数据之间的差异 对后验概率建模,从统计 ...