1、输入原始图片 2、代码实现: 效果图: ...
kmeans聚类实现灰度图像色彩量化 使用更少灰度值表示原灰度图像 程序输出结果 kmeans聚类实现彩色图像色彩量化 使用更少色彩值表示原彩色图像 控制台输出 量化结果输出 ...
2020-04-22 15:15 0 2176 推荐指数:
1、输入原始图片 2、代码实现: 效果图: ...
一次OpenCV相关作业,有一个助教小姐姐写的tutorial,很有用,链接如下: 链接:http://pan.baidu.com/s/1bZHsJk 密码:854s 1. 色彩空间: 将RGB图像转换成ycrcb和hsv图像并保存每种色彩空间每个通道的图像。 输入 ...
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 准备:图像转数组,数组转图像 将RGB图像转换为一维数组的代码 ...
灰度是指把白色与黑色之间按对数关系分为若干个等级,一般我们将灰度分为256阶(0-255)。用灰度表示的图像就叫做灰度图。 一幅完整的图像是由红色、绿色、蓝色三个通道组成的,颜色通道一般有RGB和bgr两种,其中OpenCV中采用的颜色通道模式为bgr模式。事实上,b(蓝色)、g(绿色)、r ...
聚类算法介绍 k-means算法介绍 k-means聚类是最初来自于信号处理的一种矢量量化方法,现被广泛应用于数据挖掘。k-means聚类的目的是将n个观测值划分为k个类,使每个类中的观测值距离该类的中心(类均值)比距离其他类中心都近。 k-means聚类的一个最大的问题是计算困难 ...
K-Means 聚类是最常用的一种聚类算法,它的思想很简单,对于给定的样本集和用户事先给定的 K 的个数,将数据集里所有的样本划分成 K 个簇,使得簇内的点尽量紧密地连在一起,簇间的距离尽量远。由于每个簇的中心点是该簇中所有点的均值计算而得,因此叫作 K-Means 聚类。 算法过程 ...
聚类 聚类就是对大量未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小. 数据聚类算法可以分为结构性或者分散性,许多聚类算法在执行之前,需要指定从输入数据集中产生的分类个数。 1.分散式聚类算法,是一次性确定要产生的类别,这种算法也已 ...
结果: 总结:可知不同的超参数对聚类的效果影响很大,因此在聚类之前采样的数据要尽量保持均匀,各类的方差最好先进行预研,以便达到较好的聚类效果! ...