前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https: github.com LeBron Jian MachineLearningNote K Means算法 K Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛。K Means 算法有大量的变体,本文就从最传统的K Means算法学起,在其基础上学习K Means的优化变体 ...
2020-04-28 10:37 0 3489 推荐指数:
前言 本系列为机器学习算法的总结和归纳,目的为了清晰阐述算法原理,同时附带上手代码实例,便于理解。 目录 k近邻(KNN) 决策树 线性回归 逻辑斯蒂回归 朴素贝叶斯 支持向量机(SVM ...
1.简介 K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2. 算法大致流程 ...
初始目的 将样本分成K个类,其实说白了就是求一个样本例的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎样评价假定的好不好呢? 我们使用样本的极大似然估计来度量,这里就是x和y的联合分布P(x,y ...
1. 归类: 聚类(clustering):属于非监督学习(unsupervised learning) 无类别标记(class label) 2. 举例: 3. Kmeans算法 3.1 clustering中的经典算法 ...
目录 1、定义和区别(优缺点对比) 2、kmeans原理 3、DBSCAN原理 1、定义和区别(优缺点对比) 聚类分为:基于划分、层次、密度、图形和模型五大类; 均值聚类k-means是基于划分的聚类, DBSCAN是基于密度的聚类 ...
Mini Batch K-Means算法是K-Means算法的一种优化变种,采用小规模的数据子集(每次训练使用的数据集是在训练算法的时候随机抽取的数据子集)减少计算时间,同时试图优化目标函数; Mini Batch K-Means算法可以减少K- Means算法的收敛时间,而且产生的结果效果 ...
一、简介 K-Means 是一种非监督学习,解决的是聚类问题。K 代表的是 K 类,Means 代表的是中心,你可以理解这个算法的本质是确定 K 类的中心点,当你找到了这些中心点,也就完成了聚类。 /*请尊重作者劳动成果,转载请标明原文链接:*/ /* https ...
一,引言 先说个K-means算法很高大上的用处,来开始新的算法学习。我们都知道每一届的美国总统大选,那叫一个竞争激烈。可以说,谁拿到了各个州尽可能多的选票,谁选举获胜的几率就会非常大。有人会说,这跟K-means算法有什么关系?当然,如果哪一届的总统竞选,某一位候选人是绝对的众望所归 ...