CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training 摘要 我们提出了一个变分生成对抗网络,一个包含了与生成对抗网络结合的变分子编码器,用于合成 ...
GAN Compression: Efficient Architectures for Interactive Conditional GANs Abstract 条件生成对抗网络 cGANs 为许多计算机视觉和图形应用提供了可控的图像合成。然而,最近的cGANs比现代识别CNNs的计算强度高了 个数量级。例如,GauGAN每个图像消耗 G MACs,而MobileNet v 只消耗 . G ...
2020-04-23 14:50 0 1716 推荐指数:
CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training 摘要 我们提出了一个变分生成对抗网络,一个包含了与生成对抗网络结合的变分子编码器,用于合成 ...
https://genforce.github.io/mganprior/ Image Processing Using Multi-Code GAN Prior Abstract 尽管生成对抗网络(GANs)在图像合成 ...
intractable棘手的,难处理的 posterior distributions后验分布 directed probabilistic有向概率 appro ...
Disentangling by Factorising 我们定义和解决了从变量的独立因素生成的数据的解耦表征的无监督学习问题。我们提出了FactorVAE方法,通过鼓励表征的分布因素化且在维度上独立来解耦。我们展示 ...
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 深度神经网络中用于视觉识别的空间金字塔池化 ...
先附上论文链接 https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf 最近在自学MIT的6.824分布式课程,找到两个比较好的github:MIT课程《Distributed Systems 》学习和翻译 和 https ...
Fast RCNN建立在以前使用深度卷积网络有效分类目标proposals的工作的基础上。使用了几个创新点来改善训练和测试的速度,同时还能增加检测的精确度。Fast RCNN训练VGG16网络的速度是 ...
Faster R-CNN在Fast R-CNN的基础上的改进就是不再使用选择性搜索方法来提取框,效率慢,而是使用RPN网络来取代选择性搜索方法,不仅提高了速度,精确度也更高了 ...