下面是分类的主函数入口 下面是TextCNN模型的图构建过程: 下面是读取文本文件的过程: 下面是训练过程中的log View Code ...
下面是分类的主函数入口 下面是TextCNN模型的图构建过程: 下面是读取文本文件的过程: 下面是训练过程中的log View Code ...
一、架构图 二、代码 三、解释 四、经验值 模型效果1层BILSTM在训练集准确率:99.8%,测试集准确率:96.5%;2层BILSTM在训练集准确率 ...
参考来源:https://blog.csdn.net/u012762419/article/details/79561441 TextCNN结构 TextCNN的结构比较简单,输入数据首先通过一个embedding layer,得到输入语句的embedding表示,然后通过一个 ...
简介 TextCNN模型是由 Yoon Kim提出的Convolutional Naural Networks for Sentence Classification一文中提出的使用卷积神经网络来处理NLP问题的模型.相比较nlp中传统的rnn/lstm等模型,cnn能更加高效的提取重要特征 ...
github: https://github.com/haibincoder/NlpSummary/tree/master/torchcode/classification 使用TextCNN实现文本分类 使用LSTM实现文本分类 使用Transformers实现文本分类 ...
torchtext包含以下组件: Field :主要包含以下数据预处理的配置信息,比如指定分词方法,是否转成小写,起始字符,结束字符,补全字符以及词典等等 Dataset :继承自pytorch的Dataset,用于加载数据,提供了TabularDataset可以指点路径,格式 ...
目录 概述 数据集合 代码 结果展示 一、概述 在英文分类的基础上,再看看中文分类的,是一种10分类问题(体育,科技,游戏,财经,房产,家居等)的处理。 二、数据集合 数据集为新闻,总共有四个数据文件,在/data/cnews目录下,包括内容如下图 ...
数据集是网上找的 流程: 加载数据集,去停用词 使用 Keras 的 Tokenizer 将每一文本用数字表示 创建 TextCNN 模型,训练并预测 在 1080Ti 上 batch_size = 128 时每一 epoch 用时 2 s,跑 ...