GDA(高斯判别分析) 多个样本联合概率等于每个的乘积: \[P(\boldsymbol{Y}|\boldsymbol{X}) = \prod_{i=1}^{m} P(y_i| ...
本文首发自公众号:RAIS,点击直接关注。 前言 本系列文章为 Deep Learning 读书笔记,可以参看原书一起阅读,效果更佳。由于各平台 Markdown 解析差异,有些公式显示效果不好,请到我 个人维护网站 查看。 监督学习算法 监督学习算法的定义是,给定一组输入 x 和输出 y,学习如何将其关联起来,现在的大部分情况都是监督学习算法的范畴。 逻辑回归 很多的监督学习算法是基于估计概率 ...
2020-04-06 09:10 0 2136 推荐指数:
GDA(高斯判别分析) 多个样本联合概率等于每个的乘积: \[P(\boldsymbol{Y}|\boldsymbol{X}) = \prod_{i=1}^{m} P(y_i| ...
本文首发自公众号:RAIS,点击直接关注。 前言 本系列文章为 《Deep Learning》 读书笔记,可以参看原书一起阅读,效果更佳。 无监督学习算法 就是无监督的一种学习方法,太抽象,有一种定义(这种定义其实不够准确,无监督和监督之间界限模糊)是说如果训练集有标签 ...
监督式学习:全部使用含有标签的数据来训练分类器。 无监督式学习:具有数据集但无标签(即聚类)。 半监督学习:使用大量含有标签的数据和少量不含标签的数据进行训练分类或者聚类。 半监督学习:纯半监督学习和直推式学习 纯半监督学习和直推式学习的区别: 半监督学习在学习使并不知道最终 ...
转自:https://zhuanlan.zhihu.com/p/108906502 1. 什么是自监督学习? 自监督学习主要是利用辅助任务(pretext)从大规模的无监督数据中挖掘自身的监督信息,通过这种构造的监督信息对网络进行训练,从而可以学习到对下游任务有价值的表征。 2.如何评测 ...
1 监督学习 利用一组带标签的数据, 学习从输入到输出的映射, 然后将这种映射关系应用到未知数据, 达到分类或者回归的目的 (1) 分类: 当输出是离散的, 学习任务为分类任务 输入: 一组有标签的训练数据(也叫观察和评估), 标签表明了这些数据(观察)的所属类别 ...
最近的一段时间一直在学习半监督学习算法,目前,国内的南京大学周志华老师是这方面的泰斗,写了很多这方面牛的文章,可以参考一下他的主页:http://cs.nju.edu.cn/zhouzh/。在国内的学术界周老师一直是我比较钦佩的人之一。下面贴出来的文章出自周老师之手,通俗易懂 ...
概述 监督学习指的是训练样本包含标记信息的学习任务,例如:常见的分类与回归算法; 无监督学习则是训练样本不包含标记信息的学习任务,例如:聚类算法。 在实际生活中,常常会出现一部分样本有标记和较多样本无标记的情形,例如:做网页推荐时需要让用户标记出感兴趣的网页,但是少有用户愿意花时间来提供标记 ...
监督机器学习问题主要有两种,分别叫作分类(classification)与回归(regression)。 分类问题的目标是预测类别标签(class label),这些标签来自预定义的可选列表。在二分类问题中,我们通常将其中一个类别称为正类(positive class),另一个类别称为反 类 ...