在SLAM后端非线性优化中,李群和李代数是一个绕不开的玩意儿。我们需要借助李代数来表达旋转或者位姿(平移加旋转),进行求导操作。那么,这一篇博客让我们来扒一扒李群和李代数是什么东西。在此之前,你可能有一连串疑问: 问:群是什么? 答:群是一种代数结构。通俗点说,群就是元素集合加上代数 ...
三维旋转矩阵构成特殊正交群,SO ,变换矩阵构成了特殊欧式群SE . rm SO R in rm R times left R R T I, det R I right. rm rm SE left rm T left begin array c R amp t amp end array right in rm R times left R in SO ,t in R right. right ...
2020-04-02 13:16 0 621 推荐指数:
在SLAM后端非线性优化中,李群和李代数是一个绕不开的玩意儿。我们需要借助李代数来表达旋转或者位姿(平移加旋转),进行求导操作。那么,这一篇博客让我们来扒一扒李群和李代数是什么东西。在此之前,你可能有一连串疑问: 问:群是什么? 答:群是一种代数结构。通俗点说,群就是元素集合加上代数 ...
* { font-family: "Tibetan Machine Uni", 幼圆; outline: none } a:link { } a:visited { } a:hover { } a:active { } a { } 一、概述 李群和李代数的核心 ...
slam里面用它来求解一个最小二乘问题: 这里的T是变换矩阵,也就是所谓的位姿,qi.pi分别是特征匹配后对应的点,每个点分别是一个三维向量,它们是已知的。所以这是一个关于T的函数。我 ...
群 群的性质 旋转矩阵集合与旋转乘法构成群 变换矩阵与矩阵乘法构成群 因此可以称为旋转矩阵群和变换矩阵群 三维旋转矩阵构成了特殊正交群 其他群的例子: 一般线性群GL ...
流形 流形(英語:Manifolds)是可以局部欧几里得空间化的一个拓扑空间,是欧几里得空间中的曲线、曲面等概念的推广。 是多个局部欧式空间的开区域链接而成的。 拓扑空间 拓扑空间是一个集合 ...
第三章作业 作业:曾是少年 二 群的性质 课上我们讲解了什么是群。请根据群定义,求解以下问题: 1. \(\{Z, +\}\) 是否为群?若是,验证其满足群定义;若不是,说明理由。 答:{Z ...
昨天,刚接触道了李群和李代数,查了许多资料,也看了一些视屏。今天来谈谈自己的感受。 李群是有一个挪威数学家提出的,在十九二十世纪得到了很大的发展。 其归于非组合数学,现在简单介绍李群和李代数的概念。群的定义是一种集合加上一种运算的代数结构。其集合记为A,运算记为 . ,当其满足以下四条性质时 ...
大型网站架构演化 大型网站软件系统的特点 高并发,大流量 高可用 海量数据 用户分布广泛,网络情况复杂 安全环境恶劣 需求快速变更,发布 ...