Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic ...
Multi task Collaborative Network for Joint Referring Expression Comprehension and Segmentation : : Paper:https: arxiv.org abs . CVPR Oral Code:https: github.com luogen MCN Blog: 机器之心 . Background and ...
2020-03-30 19:04 0 828 推荐指数:
Instance-aware Semantic Segmentation via Multi-task Network Cascades Jifeng Dai Kaiming He Jian Sun 本文的出发点是做Instance-aware Semantic ...
相关论文:Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks 概论 用于人脸检测和对齐。 本文提出的unified cascaded CNNs ...
论文地址:基于高效多任务卷积神经网络的残余声回波抑制 摘要 回声会降低语音通信系统的用户体验,因此需要完全抑制。提出了一种利用卷积神经网络实现实时残余声回波抑制的方法。在多任务学习的背景下 ...
摘要 多任务学习(Multi-Task Learning, MTL)是机器学习中的一种学习范式,其目的是利用包含在多个相关任务中的有用信息来帮助提高所有任务的泛化性能。 首先,我们将不同的MTL算法分为特征学习法、低秩方法、任务聚类方法、任务关系学习方法和分解方法,然后讨论每种方法的特点 ...
1. 前言 多任务学习(Multi-task learning)是和单任务学习(single-task learning)相对的一种机器学习方法。在机器学习领域,标准的算法理论是一次学习一个任务,也就是系统的输出为实数的情况。复杂的学习问题先被分解成理论上独立的子问题,然后分别对每个子问题 ...
首先说一下我对这个方案的看法,相比第一名与第二名的方案,这个方案的分割方法确实复杂的多,原论文是发表在MICCAI,后来砖投到IEEE image processing(SCI 1区),总体感觉给人一 ...
MTL 有很多形式:联合学习(joint learning)、自主学习(learning to learn)和带有辅助任务的学习(learning with auxiliary task)等。一般来说,优化多个损失函数就等同于进行多任务学习。即使只优化一个损失函数(如在典型情况下),也有可能借 ...
知识图谱(Knowledge Graph,KG)可以理解成一个知识库,用来存储实体与实体之间的关系。知识图谱可以为机器学习算法提供更多的信息,帮助模型更好地完成任务。 在推荐算法中融入电影的知识图谱 ...