基于收敛的方法 基于收敛的方法目标是学习每个节点的一种状态嵌入\(h_v\)(包括每个节点的邻居节点信息和自身的信息),\(h_v\) 是一个 关于节点 \(v\) 的\(s\) 维的向量特征,用于 ...
. . 更新 写在前头,由于毕设的需要,我一直在学习图神经网络,看了很多文章解析,以及顶会使用上了gcn的各个领域开源代码,我还是不太懂它为什么会有作为,现在的方法大多数是 第一步查看自己任务怎么能表示成图,一般就是有节点特征和邻接矩阵后,直接上gcn,我感觉 论文的 why部分,讲的不是很好,感觉有一种为了 gcn而gcn的感觉,所以到底为什么好呢 gcn,它推理能力真的强吗。可能现在的我水平 ...
2020-03-25 16:24 0 2135 推荐指数:
基于收敛的方法 基于收敛的方法目标是学习每个节点的一种状态嵌入\(h_v\)(包括每个节点的邻居节点信息和自身的信息),\(h_v\) 是一个 关于节点 \(v\) 的\(s\) 维的向量特征,用于 ...
GCN代码实战 书中5.6节的GCN代码实战做的是最经典Cora数据集上的分类,恰当又不恰当的类比Cora之于GNN就相当于MNIST之于机器学习。 有关Cora的介绍网上一搜一大把我就不赘述了,这里说一下Cora这个数据集对应的图是怎么样的。 Cora有2708篇论文,之间有引用关系 ...
https://zhuanlan.zhihu.com/p/75307407 本篇文章是我在2019年8月阅读完论文“Wu, Zonghan , et al. "A Comprehensive Sur ...
https://www.cnblogs.com/hellojamest/p/11678324.html 图卷积网络Graph Convolutional Nueral Network,简称GCN,最近两年大热,取得不少进展。不得不专门为GCN开一个新篇章,表示其重要程度。本文结合大量参考文献 ...
第6章 GCN的性质 第5章最后讲到GCN结束的有些匆忙,作为GNN最经典的模型,其有很多性质需要我们去理解。 6.1 GCN与CNN的区别与联系 CNN卷积卷的是矩阵某个区域内的值,图卷积在空域视角下卷的是节点的邻居的值,由此粗略来看二者都是在聚合邻域的信息。 再具体来看一些区别与联系 ...
论文地址Deep Learning on Graphs: A Survey 一、图的不同种类深度学习方法 1、主要分为三大类:半监督学习,包括图神经网络和图卷积神经网络; 2、无监督学习图自编码机; 3、最新的进展,图对抗神经网络和图强化学习。分析了不同方法的特点和联系。 二、图 ...
关于整图分类,有篇知乎写的很好:【图分类】10分钟就学会的图分类教程,基于pytorch和dgl。下面的代码也是来者这篇知乎。 import dgl import torch from torch._C import device import torch.nn as nn import ...