原文:集成学习与随机森林(三)随机森林与随机子空间

随机森林与随机子空间 BaggingClassifier类也支持对特征采样,这种采样由两个超参数控制:max features 与 bootstrap features,他们的工作方式与max samples 与 bootstrap一样,只是他们采样的是特征。这样,每个模型将会在一个随机的输入特征子集中进行训练。 这个技巧在处理高维输入 例如图片 时非常有用。同时采样训练数据以及特征的方法,称为R ...

2020-03-20 21:13 0 775 推荐指数:

查看详情

集成学习随机森林

森林,解决决策树泛化能力弱的缺点。随机森林是基于bagging框架下的决策树模型,集成学习中可以和梯度提 ...

Tue Apr 14 23:19:00 CST 2020 0 769
集成学习中的随机森林

摘要:随机森林集成算法最前沿的代表之一。随机森林是Bagging的升级,它和Bagging的主要区别在于引入了随机特征选择。 本文分享自华为云社区《集成学习中的随机森林》,原文作者:chengxiaoli。 随机森林集成算法最前沿的代表之一。随机森林是Bagging的升级 ...

Thu May 27 22:30:00 CST 2021 0 179
集成学习随机森林(二)Bagging与Pasting

Bagging 与Pasting 我们之前提到过,其中一个获取一组不同分类器的方法是使用完全不同的训练算法。另一个方法是为每个预测器使用同样的训练算法,但是在训练集的不同的随机子集上进行训练。在数据抽样时,如果是从数据中重复抽样(有放回),这种方法就叫bagging(bootstrap ...

Mon Mar 09 04:51:00 CST 2020 0 656
随机森林

概述 鉴于决策树容易过拟合的缺点,随机森林采用多个决策树的投票机制来改善决策树,我们假设随机森林使用了m棵决策树,那么就需要产生m个一定数量的样本集来训练每一棵树,如果用全样本去训练m棵决策树显然是不可取的,全样本训练忽视了局部样本的规律,对于模型的泛化能力是有害的 产生n个样本的方法采用 ...

Thu May 10 18:28:00 CST 2018 0 1901
随机森林

三个臭皮匠顶个诸葛亮       --谁说的,站出来! 1 前言   在科学研究中,有种方法叫做组合,甚是强大,小硕们毕业基本靠它了。将别人的方法一起组合起来然后搞成一个集成的算法,集百家之长,效果一般不会差。其实 也不能怪小硕们,大牛们也有这么做的,只是大牛们做的比较漂亮 ...

Wed Jan 20 03:00:00 CST 2016 0 2582
随机森林

随机森林】是由多个【决策树】构成的,不同决策树之间没有关联。 特点 可以使用特征多数据,且无需降维使用,无需特征选择。 能够进行特征重要度判断。 能够判断特征间的相关影响 不容器过拟合。 训练速度快、并行。 实现简单。 不平衡数据集、可平衡误差 ...

Tue Dec 14 01:41:00 CST 2021 0 162
集成学习随机森林(四)Boosting与Stacking

Boosting Boosting(原先称为hypothesis boosting),指的是能够将多个弱学习器结合在一起的任何集成方法。对于大部分boosting方法来说,它们常规的做法是:按顺序训练模型,每个模型都会尝试修正它的前一个模型。Booting 方法有很多种,不过到现在为止最热 ...

Wed Mar 25 04:40:00 CST 2020 0 795
随机森林

什么是随机森林随机森林就是通过集成学习的思想将多棵树集成的一种算法,它的基本单元是决策树,而它的本质属于机器学习的一大分支——集成学习(Ensemble Learning)方法。随机森林的名称中有两个关键词,一个是“随机”,一个就是“森林”。“森林”我们很好理解,一棵叫做树,那么成百上千棵 ...

Fri Apr 12 23:48:00 CST 2019 0 991
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM