1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...
本文介绍了利用机器学习实现胸部CT扫描图像自动判读的任务,这对我来说是一个有趣的课题,因为它是我博士论文研究的重点。这篇文章的主要参考资料是我最近的预印本 Machine Learning Based Multiple Abnormality Prediction with Large Scale Chest Computed Tomography Volumes. CT扫描图像是一种大体积图像 ...
2020-03-19 13:27 0 1155 推荐指数:
1.标准卷积神经网络 标准的卷积神经网络由输入层、卷积层(convolutional layer)、下采样层(downsampling layer)、全连接层(fully—connected layer)和输出层构成。 卷积层也称为检测层 下采样层也称为池化层(pooling ...
本来这门课程http://speech.ee.ntu.edu.tw/~tlkagk/courses_ML16.html 作业是用卷积神经网络做半监督学习,这个还没完全解决,于是先从基础的开始,用keras 实现cifar10。 以下是代码 以下是正确率和损失曲线 ...
我对机器学习的某些方面还是欠缺了解,总感觉整理不下去,初步定下以下话题吧。 卷积神经网络DN ...
最近几天陆续补充了一些“线性回归”部分内容,这节继续机器学习基础部分,这节主要对CNN的基础进行整理,仅限于基础原理的了解,更复杂的内容和实践放在以后再进行总结。 卷积神经网络的基本原理 前面对全连接神经网络和深度学习进行了简要的介绍,这一节主要对卷积神经网络的基本原理进行学习和总结 ...
谷歌论文题目: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications 其他参考: CNN模型之MobileNet Mobilenet网络的理解 轻量化网络 ...
转自: https://blog.csdn.net/lyl771857509/article/details/78990215 神经网络 好了,前面花了不少篇幅来介绍激活函数中那个暗藏玄机的e,下面可以正式介绍神经元的网络形式了。下图是几种比较常见的网络形式: 左边蓝色的圆圈 ...
BP神经网络是深度学习的重要基础,它是深度学习的重要前行算法之一,因此理解BP神经网络原理以及实现技巧非常有必要。接下来,我们对原理和实现展开讨论。 1.原理 有空再慢慢补上,请先参考老外一篇不错的文章:A Step by Step Backpropagation Example ...