R包ropls的PCA、PLS-DA和OPLS-DA 在代谢组学分析中经常 ...
正交: 正交是线性代数的概念,是垂直这一直观概念的推广。作为一个形容词,只有在一个确定的内积空间中才有意义。若内积空间中两向量的内积为 ,则称它们是正交的。如果能够定义向量间的夹角,则正交可以直观的理解为垂直。物理中:运动的独立性,也可以用正交来解释。 对于一般的 希尔伯特空间, 也有内积的概念, 所以人们也可以按照上面的方式定义正交的概念。 特别的, 我们有n维欧氏空间中的正交概念, 这是最直接 ...
2020-03-18 10:53 0 767 推荐指数:
R包ropls的PCA、PLS-DA和OPLS-DA 在代谢组学分析中经常 ...
情况下,执行类似于PCA的分解要明智得多。 今天,我们将 在Arcene数据集上执行PLS-DA, ...
目录 一、线性代数 常见概念 标量(scalar) 向量(vector) 矩阵(matrix) 张量(tensor) 范数(norm) 内积(inner product ...
一:含义 将一些元素排列成若干行,每行放上相同数量的元素,就是一个矩阵。这里说的元素可以是数字,例如以下的矩阵: 二:特点 矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如之类的线性函数 ...
[作者:byeyear,首发于cnblogs.com,转载请注明。联系:east3@163.com] 回忆学校的美好时光,顺便复习一下学校学过的知识吧。 1. 设A,B为可以相乘的矩阵,AB的每一列都是A的各列的线性组合,以B的对应列的元素为权。 同样,AB的每一行都是B的各行 ...
1 定义 一个n阶实对称矩阵MM符合正定矩阵的条件是当且仅当非零实系数向量zz,都有zTMzzTMz>0 2 性质 2.1 充要条件 矩阵MM的特征值全是正数 A的各阶顺序主子式都是是正的 MM合同于单位矩阵 2.2 基本性质 正定矩阵的任一主子矩阵也是 ...
为了完整地展示线性代数,我们必须包含复数。即使矩阵是实的,特征值和特征向量也经常会是复数。 1. 虚数回顾 虚数由实部和虚部组成,虚数相加时实部和实部相加,虚部和虚部相加,虚数相乘时则利用 \(i^2=-1\)。 在虚平面,虚数 \(3+2i\) 是位于坐标 \((3, 2)\) 的一个 ...
矩阵在计算机中有大量的应用,尤其在WebGL中涉及到大量的矩阵运算。从头开始学习一遍线性代数,使用的教材是《线性代数》第三版。 矩阵的定义 由m x n个元素,排成m行n列的数表。叫做m行n列矩阵,简称:m x n 矩阵。 其中:矩阵里的数字叫做矩阵A 的元素;元素都是实数的叫做 ...