背景与原理: 聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第 篇文章,我们一起来看下Kmeans聚类算法。 在上一篇文章当中我们讨论了KNN算法,KNN算法非常形象,通过距离公式找到最近的K个邻居,通过邻居的结果来推测当前的结果。今天我们要来看的算法同样非常直观,也是最经典的聚类算法之一,它就是Kmeans。 我们都知道,在英文当中Means是平均的意思,所以也有将它翻译成K ...
2020-03-18 08:44 0 638 推荐指数:
背景与原理: 聚类问题与分类问题有一定的区别,分类问题是对每个训练数据,我给定了类别的标签,现在想要训练一个模型使得对于测试数据能输出正确的类别标签,更多见于监督学习;而聚类问题则是我们给出了一组数据,我们并没有预先的标签,而是由机器考察这些数据之间的相似性,将相似的数据聚为一类,是无监督学习 ...
0.聚类 聚类就是对大量的未知标注的数据集,按数据的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小,聚类属于无监督的学习方法。 1.内在相似性的度量 聚类是根据数据的内在的相似性进行的,那么我们应该怎么定义数据的内在的相似性呢?比较常见的方法 ...
1、K-Means原理 K-Means算法的基本思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。 如果用数据表达式表示,假设簇划分为(C1,C2,...Ck),则我们的目标是最小化平方误差E: \[E ...
聚类算法 任务:将数据集中的样本划分成若干个通常不相交的子集,对特征空间的一种划分。 性能度量:类内相似度高,类间相似度低。两大类:1.有参考标签,外部指标;2.无参照,内部指标。 距离计算:非负性,同一性(与自身距离为0),对称性,直递性(三角不等式)。包括欧式距离(二范数 ...
机器学习-文本聚类实例-kmeans ...
class sklearn.cluster.KMeans (n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001,precompute_distances=’auto’, verbose ...
(Clustering)是最常见的无监督学习算法,它指的是按照某个特定标准(如距离)把一个数据集分割成不同的类 ...