线性回归模型的短板 岭回归模型 λ值的确定--交叉验证法 岭回归模型应⽤ 寻找最佳的Lambda值 基于最佳的Lambda值建模 Lasso回归模型 LASSO回归模型的交叉验证 Lasso回归模型应用 ...
由于计算一般线性回归的时候,其计算方法是: p X X X y 很多时候 矩阵 X X 是不可逆的,所以回归系数p也就无法求解, 需要转换思路和方法求解:加 范数的最小二乘拟合 岭回归 岭回归模型的系数表达式: p X X X y 如何实现岭回归: Ridge用于构建岭回归模型 RidgeCV用于交叉验证求解Ridge回归模型的最佳参数。 岭回归解决了线性回归中矩阵X X不可逆的问题,即添加l ...
2019-08-24 14:47 0 1266 推荐指数:
线性回归模型的短板 岭回归模型 λ值的确定--交叉验证法 岭回归模型应⽤ 寻找最佳的Lambda值 基于最佳的Lambda值建模 Lasso回归模型 LASSO回归模型的交叉验证 Lasso回归模型应用 ...
就是修改线性回归中的损失函数形式即可,岭回归以及Lasso回归就是这么做的。 岭回归与Las ...
多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大;因此减少不必要的特征,简化模型是减小方差的一个重要步骤。除了直接对特征筛选,来也可以进行特征压缩,减少某些不重要的特征系数,系数压缩趋近于0就可以认为舍弃该特征。 岭回归(Ridge Regression)和Lasso ...
回归和分类是机器学习算法所要解决的两个主要问题。分类大家都知道,模型的输出值是离散值,对应着相应的类别,通常的简单分类问题模型输出值是二值的,也就是二分类问题。但是回归就稍微复杂一些,回归模型的输出值是连续的,也就是说,回归模型更像是一个函数,该函数通过不同的输入,得到不同的输出 ...
线性回归——最小二乘 线性回归(linear regression),就是用线性函数 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去拟合一组数据 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...
模型的假设检验(F与T) F检验 提出原假设和备用假设,之后计算统计量与理论值,最后进行比较。 F校验主要检验的是模型是否合理。 导入第三方模块 import numpy as np import pandas as pd from sklearn import ...
(一)不同来源的数据合并 需要注意的是,由于国债收益率从Wind导入(为数据框类型),而股票数据是使用quantmod包爬取(为zoo、xts类型),因此出现了数据类型和时间不匹配问题。 先通过设 ...
# 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...