一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小。另外,在运用随机梯度下降法之前需要利用 ...
1、梯度下降(gradient decent) 梯度下降方法是我们求最优化的常用方法。常用的有批量梯度下降和随机梯度下降。 对于一个目标函数;我们目的min(J(Θ)), α是learningrate,表示每次向梯度负方向下降的步长,经过一次次迭代,向最优解收敛,如下图 ...
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复出现的问题: 好的泛化需要大的训练集,但是大的训练集的计算代价也更大 ...
本文主要使用了对数几率回归法与线性判别法(LDA)对数据集(西瓜3.0)进行分类。其中在对数几率回归法中,求解最优权重W时,分别使用梯度下降法,随机梯度下降与牛顿法。 代码如下: View Code 结果: 牛顿法: 迭代 5步:w ...
线性回归与梯度下降算法 作者:上品物语 转载自:线性回归与梯度下降算法讲解 知识点: 线性回归概念 梯度下降算法 l 批量梯度下降算法 l 随机梯度下降算法 l 算法收敛判断方法 1.1 线性回归 在统计学中 ...
https://www.cnblogs.com/lliuye/p/9451903.html 梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent ...
梯度下降法作为机器学习中较常使用的优化算法,其有着三种不同的形式:批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent)以及小批量梯度下降(Mini-Batch Gradient Descent)。其中小批量梯度下降 ...