原文:pytorch转置卷积(反卷积)参数说明,尺寸输入输出的计算

pytorch转置卷积 反卷积 参数说明,尺寸输入输出的计算 函数构造: in channels int 输入信号的通道数 out channels int 卷积产生的通道数 kerner size intortuple 卷积核的大小 stride intortuple,optional 卷积步长 padding intortuple,optional 输入的每一条边补充 的层数 output p ...

2020-03-06 12:40 0 2766 推荐指数:

查看详情

pytorch卷积输入输出以及计算公式

1、nn.Conv2d class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True) 二维卷积层, 输入的尺度是(N, C_in ...

Tue Mar 16 04:38:00 CST 2021 0 300
[Pytorch] 卷积尺寸计算

公式来自官方文档,戳->(Conv3d — PyTorch master documentation) 本文仅作记录,顺便练习Latex语法 2D \(H_{out}=\frac{H_{in}+2\times padding[0]-dilation[0]\times(kernel ...

Sun May 31 23:27:00 CST 2020 0 931
卷积转置卷积)的理解

参考:打开链接 卷积: 就是这个图啦,其中蓝色部分是输入的feature map,然后有3*3的卷积核在上面以步长为2的速度滑动,可以看到周围还加里一圈padding,用更标准化的参数方式来描述这个过程: 二维的离散卷积(N=2) 方形的特征输入(\(i_{1}=i_{2}=i\)) 方形 ...

Mon Dec 10 07:23:00 CST 2018 0 3457
卷积 转置卷积的理解

看了很多卷积转置卷积的文章,似乎还是一头雾水,记录下自己理解的过程~ 有人一句话总结:逆卷积相对于卷积在神经网络结构的正向和反向传播中做相反的运算。其实还是不是很理解。 卷积转置卷积)通常用来两个方面: 1. CNN可视化,通过卷积卷积得到的feature map还原到像素空间 ...

Wed Aug 29 06:48:00 CST 2018 33 21059
卷积神经网络参数计算卷积输出尺寸计算

一、卷积神经网络参数计算 CNN一个牛逼的地方就在于通过感受野和权值共享减少了神经网络需要训练的参数的个数,所谓权值共享就是同一个Feature Map中神经元权值共享,该Feature Map中的所有神经元使用同一个权值。因此参数个数与神经元的个数无关,只与卷积核的大小及Feature Map ...

Wed Mar 20 17:19:00 CST 2019 0 4999
图像卷积卷积(后卷积转置卷积

一、图像卷积类型   在2维图像卷积计算中,大致分为full、same和valid这三类。   1、valid卷积操作                图1 valid卷积操作   valid卷积的图像大小计算公式为:滑动步长为S,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图 ...

Thu Aug 16 18:29:00 CST 2018 1 2392
卷积网络输出尺寸计算卷积核相关

先定义几个参数 输入图片大小 W×W Filter大小 F×F 步长 S padding的像素数 P 于是我们可以得出 N = (W − F + 2P )/S+1 卷积核:一个卷积核只有三维,卷积核的厚度对应的被卷积特征的通道数,卷积核的个数 ...

Sat Dec 02 02:42:00 CST 2017 0 4354
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM